PRODUCTS OF REGULAR CARDINALS AND CARDINAL INVARIANTS OF PRODUCTS OF BOOLEAN ALGEBRAS

BY

SAHARON SHELAH

Institute of Mathematics, The Hebrew University of Jerusalem, Jerusalem, Israel; and Department of Mathematics, Rutgers University, New Brunswick, New Jersey, USA

ABSTRACT

We answer some questions of Monk, and give some information on others concerning cardinal invariants of Boolean algebras under ultraproducts and products.

TABLE OF CONTENTS

§1.	On λ -c.c. in ultraproducts of Boolean algebras	130
	We point out that	
	(a) the answer to "if B_i satisfies the λ -c.c. for $i < \theta$, D a uniform	
	(or even regular) ultrafilter on θ , then $\Pi B_i/D$ satisfies	
	the μ -c.c." does not depend on cardinal arithmetic alone;	
	(b) for most λ , there are Boolean algebras B_n $(n < \omega)$	
	satisfying the λ -c.c. such that for any uniform ultrafilter	
	D on ω , $\Pi_{n < m} B_n/D$ does not satisfy the λ -c.c.	
§2.	On length of Boolean algebras	132
	[We show (in ZFC) that the length of $\Pi_{i \le \kappa} B_i$ cannot	
	be computed from $\langle length(B_i) : i < \kappa \rangle$ alone.]	
§3.	On depth of Boolean algebras	136
	[We point out that consistently, for some regular ultrafilter D on	
	λ for any Boolean algebra B of power $\leq \lambda$, in B^{λ}/D there is	
	no linearly ordered subset of power 2 ³ 1	

We thank A. Hajnal and T. Jech for detecting gaps, and O. Kolman for proofreading (and urging a detailed proof of 4.8).

Received August 7, 1988 and in revised form May 31, 1989

[†] The author would like to thank the United States-Israel Binational Science Foundation for partially supporting this research, and Alice Leonhardt for the beautful typing. Publication no. 345.

^{**§1-4} of this paper are essentially the letters which the author sent in December 1987 to Monk solving problems from his notes on cardinal invariants of B.A.; §8 and §9 were written for §4; the other sections, §§5, 6 and 7, were completed in March 1988. Concerning §§5-9, for further results see Abstracts of AMS and subsequent papers. §10 was written during the Arcata meeting, summer 1985, and §11 in January 1986, after questions of Todorcevic.

§4.	Spread and entangled orders	140
§5.	The basic properties of pcf(a)	155
	[We show that $ a < \min a$ (instead of $2^{ a } < \min a$)	
	is enough to guarantee that $\langle J_{<\lambda}^0[a] : \lambda \in pcf(a) \rangle$ behaves	
	very nicely.]	
§6.	Normality of $\lambda \in pcf(a)$ for a	162
	[A property missing in §5 (but guaranteed by $2^{ a } < \min a$)	
	is normality: $J^0_{<\lambda^+}[a] = J^0_{<\lambda}[a] + b_{\lambda}$. We give some	
	sufficient conditions for its existence.]	
§7.	Getting better representations: generating sequences and	
	cofinality systems	169
§8.	Kurepa trees from strong violation of GCH	176
	[If \aleph_{ω_1} is strong limit, $2^{\aleph_{\omega_1}} > \aleph_{\omega_2}$, then on ω_1 there is a	
	Kurepa tree.]	
§9.	Localizing pcf	179
	[If $\lambda \in pcf(\bigcup_{i < \kappa} a_i) - \bigcup_{i < \kappa} pcf(\bigcup_{j < i} a_j)$, then λ is the	
	cofinality of $\{\lambda_i : i < \kappa\}$ for suitably chosen $\lambda_i \in \operatorname{pcf} a_i$	
	$(i < \kappa)$; also if $\lambda \in pcf(b)$, $b \subseteq pcf(a)$, then for some	
	$b' \subseteq b, b' \le a \text{ and } \lambda \in pcf(b').$	
§10.	Consistency of uniform copies of ω_1	182
	[We prove the consistency of: for every partition of the power	
	set of ω_1 to two, at least one contains a copy of ω_1	
	(topologically).]	
§11.	On a problem of Archangelski	184
	[We construct a Hausdorff space with a basis of clopen sets,	
	of power λ such that $\Delta(X) = \psi(X)$, i.e. the diagonal is the	
	intersection of countably many open sets (hence every x in X	
	has pseudo-character \aleph_0).]	
	References	186

The results in §§4-9 are substantially improved in [Sh 355], [Sh 371] and [Sh 400].

§1. On λ -c.c. in ultraproducts of Boolean algebras

We point out that

 $(*)_{\lambda,\mu,\theta}$ if D is a filter on θ , for $i < \theta$, B_i is a λ -c.c. Boolean algebra, then $\prod_{i < \theta} B_i/D$ is a μ -c.c. Boolean algebra

is independent of ZFC,[†] and that λ^+ -c.c. is not preserved by ultraproducts of countably many Boolean algebras.

Remember:

1.1. DEFINITION. Let $\lambda \to [\mu]_{\kappa,\theta}^n$ iff for any $c : [\lambda]^n \to \kappa$ there is $A \in [\lambda]^{\mu}$ such that $|\text{Rang}(c \upharpoonright [A]^n)| \le \theta$.

[†] Even fixing cardinal arithmetic.

Also $\lambda \to [\mu]_{\kappa, < \theta}^n$ is defined similarly.

We shall use the obvious monotonicity properties. By [Sh 288],[†]

1.2. Theorem. If $\lambda^{<\lambda} = \lambda = \operatorname{cf} \lambda < \mu$, μ strongly Mahlo, then for some λ^+ -c.c. λ -complete forcing notion P of power μ ,

$$\Vdash_P "2^{\lambda} = \mu \& \mu \rightarrow [\lambda^+]_{\sigma,2}^2 \quad \text{for } \sigma < \lambda".$$

Now

- 1.2A. CLAIM. (1) If $\mu \rightarrow [\lambda]_{2^{\theta}, <\aleph_0}^2$, then:
- $(*)_{\lambda,\mu,\theta}$ if D is a filter on θ , and B_i is a Boolean algebra satisfying the λ -c.c. for $i < \theta$, then $B = \prod_{i < \theta} B_i/D$ satisfies the μ -c.c.
- (2) We can replace 2^{θ} by Min $\{|E|: E \subseteq D \text{ generates } D\}$.

PROOF. Let, for $\alpha < \mu$, $a_{\alpha} = \langle a_i^{\alpha} : i < \theta \rangle / D \neq 0$, for $\alpha < \beta < \mu$, $\beta \models a_{\alpha} \cap a_{\beta} = 0$, and for $\alpha < \mu$, $\beta \models a_{\alpha} \neq 0$.

Let $c(\alpha, \beta) = \{i : a_i^{\alpha} \cap a_i^{\beta} = 0 \& a_i^{\alpha} \neq 0 \& a_i^{\beta} \neq 0\}$. So c is a coloring of μ , two place, $|\text{Rang } c| \leq 2^{\theta}$ (just the power of a set generating D is enough) and $c(\alpha, \beta) \in D$ for $\alpha < \beta < \mu$.

So on some $A \in [\mu]^{\lambda}$, Rang $(c \upharpoonright [A]^2)$ is finite; so the intersection \bigcap Rang $(c \upharpoonright [A]^2)$ is in D hence nonempty. So for some $i \ (\forall \alpha < \beta \text{ in } A)$ $[a_i^{\alpha} \cap a_i^{\beta} = 0 \& a_i^{\alpha} \neq 0 \& a_i^{\beta} \neq 0]$, so $\{a_i^{\alpha} : \alpha \in A\} \subseteq B_i$ shows B_i does not satisfy λ -c.c.; contradiction.

1.3. Conclusion. The question whether $(*)_{\lambda,\mu,\theta}$ holds does not depend on cardinal arithmetic alone.

PROOF. Start e.g. with $V \models$ GCH. By 1.2, 1.2A we get one case: $(*)_{\lambda,\mu,\theta}$ holds. If we use $P = \text{adding } \mu$ Cohen subsets to λ we get $\neg(*)_{\lambda,\mu,\theta}$, but the same cardinal arithmetic.

1.3A. CLAIM. If $\mu \to [\lambda]_{\theta, < \kappa}^2$, μ regular for simplicity and for $i < \theta$, B_i is a Boolean algebra and B, the product of $\langle B_i : i < \theta \rangle$, does not satisfy the μ -c.c., then for some $a \subseteq \theta$, $|a| < \kappa$, the product of $\langle B_i : i \in a \rangle$ does not satisfy the λ -c.c.

PROOF. Similar, so we leave it to the reader.

[†] For a weaker (but sufficient) result, see [Sh 276].

- 1.4. THEOREM. Suppose $\lambda > \aleph_1$ is regular. Then there are Boolean algebras B_n $(n < \omega)$ such that:
 - (i) B_n satisfies the λ -c.c.,
 - (ii) for any uniform ultrafilter D on ω (or filter containing the cobounded subsets) $\prod_{n<\omega} B_n/D$ does not satisfy the λ -c.c. except possibly when
 - (*) λ is Mahlo and for every $\langle C_{\mu} : \mu < \lambda, \mu$ is inaccessible \rangle , C_{μ} a club of μ there is C a club of λ such that $\forall \alpha < \lambda \exists \mu (C \cap \alpha = C_{\mu} \cap \alpha)$.

REMARK. If λ is a successor or just not Mahlo then (*) fails trivially. Also if there are stationary $S_i \subseteq \lambda$ such that for any inaccessible $\lambda' < \lambda$ ($\exists i < \lambda'$)[$S_i \cap \lambda'$ not stationary] then (*) fails (see [Sh 276], 3.9).

PROOF. See [Sh 276] proof of 3.11, 3.3, §3 (which continues Todorcevic [T 2]). By the proof, for such λ , there is a symmetric function c from $[\lambda]^2$ to ω such that:

(A) if $n < \omega$, $i \le \zeta_i^1 < \zeta_i^2 < \cdots < \zeta_i^n$ for $i < \lambda$ and $m < \omega$, then for some i < j:

$$\zeta_i^n < \zeta_j^1$$
 and $\bigwedge_{l=1}^n \bigwedge_{k=1}^n c(\zeta_j^l, \zeta_i^k) \ge m$.

We define a Boolean algebra B_n : it is freely generated by $\{x_i^n : i < \lambda\}$ except:

$$B_n \models x_\alpha^n \cap x_\beta^n = 0$$
 when $\alpha < \beta \& c(\beta, \alpha) \le n$.

Now $B_n \models \lambda$ -c.c. by (A) (for each n) but $\prod B_n/D \models \neg \lambda$ -c.c. as

$$\langle \langle x_a^n : n < \omega \rangle / D : \alpha < \lambda \rangle$$

exemplify this.

- 1.5. Conclusion. If $\lambda \ge \aleph_1$, then for some B_n $(n < \omega)$
- (i) $c(B_n) \leq \lambda$,
- (ii) $c(\prod_{n<\omega} B_n/D) \ge \lambda^+$ for every uniform ultrafilter D on ω .
- 1.6. OBSERVATION. If D is ultrafilter on I, $\lambda \to (\lambda_i)_{i \in I}^2$, $B_i \models \lambda_i$ -c.c., then $\prod B_i/D \models \lambda$ -c.c.
 - §2. On length of Boolean algebras
 - 2.1. Definition. For a Boolean algebra, B, let:

Length(B) =
$$\sup\{|Y|: Y \subseteq B, Y \text{ is linearly ordered}\}.$$

We shall prove that the length of $\Pi_{i < \kappa} B_i$ cannot be computed from $\langle \text{Length}(B_i) : i < \kappa \rangle$ alone.

2.2. LEMMA. (1) Let $T \subseteq {}^{\kappa \geq} \lambda$ be a tree (with κ levels) [i.e. $\eta \in T \Rightarrow \{\eta \upharpoonright \alpha : \alpha \leq \lg(\eta)\} \subseteq T$] and

$$[\eta \in T \cap {}^{\alpha}\lambda, \alpha < \beta < \kappa \Rightarrow \exists {}^{>1}\nu \in T \cap {}^{\beta}\lambda(\nu \upharpoonright \alpha = \eta)].$$

For each α let $T_{\alpha} = T \cap {}^{\alpha}\lambda$, $<_{\alpha}$ -lexicographic order on T_{α} . Let B_{α} be the interval Boolean algebra of $(T_{\alpha}, <_{\alpha})$. Then

- (a) Length(B_{α}) = $|T_{\alpha}|$ if T_{α} is infinite, and $2^{|T_{\alpha}|} < \aleph_0$ if T_{α} is finite;
- (b) Length($\Pi_{\alpha < \kappa} B_{\alpha}$) $\geq |T_{\kappa}| \ (\kappa \geq \aleph_0, of course)$.
- (2) Let B'_{α} be the interval Boolean algebra of the cardinal $|T_{\alpha}|$. Then
 - (a) Length(B'_{α}) = $|T_{\alpha}|$ if T_{α} is infinite, and $2^{|T_{\alpha}|}$ ($< \aleph_0$) if T_{α} is finite,
- (b) Length($\Pi_{\alpha < \kappa} B'_{\alpha}$) $\leq \mu \stackrel{\text{def}}{=} \Sigma_{\alpha < \kappa} |T_{\alpha}|^{\aleph_0} + 2^{\kappa}$ when κ has uncountable cofinality.

Proof. (1)(a) Immediate.

- (1)(b) W.l.o.g. $0_{\alpha} = \langle 0 : i < \alpha \rangle \in T_{\alpha}$, for $\eta \in {}^{\kappa} \lambda \cap T$ let $a_{\eta} = \langle [0_{\alpha}, \eta \upharpoonright \alpha) : \alpha < \kappa \rangle \in \Pi_{\alpha < \kappa} B_{\alpha}$.
 - (2)(a) Immediate.
 - (2)(b) Let $\lambda \ge \mu$, $\lambda = \lambda^{\aleph_0}$.

Let J be a linear order, $|J| > \lambda$ and suppose there are $a_i = \langle a_i^{\alpha} : \alpha < \kappa \rangle \in \Pi$ B_i' for $t \in J$ and $\langle a_i : t \in J \rangle$ a chain in Π B_i' . We shall get a contradiction thus finishing the proof.

Now for each α

(*) we can find $\langle A_n^{\alpha} : n < \omega \rangle$, $\langle m_n^{\alpha} : n < \omega \rangle$ and h_{α}^n such that:

$$\mathbf{B}'_{\alpha}\setminus\{0\}=\bigcup_{n<\omega}A_n^{\alpha},$$

 $h_{\alpha}^{n}: A_{n}^{\alpha} \to {}^{m_{n}^{\alpha}}|T_{\alpha}|$ (sequence of length m_{n}^{α} of ordinals $<|T_{\alpha}|$) such that:

(\oplus) if $c, d \in A_n^{\alpha}$, then the truth values of c = d, c < d depend just on the equalities and inequalities between the ordinals in the sequences $h_n^{\alpha}(c), h_n^{\alpha}(d)$.

As $\lambda \ge 2^{\kappa}$, we know that w.l.o.g. for some $\langle n(\alpha) : \alpha < \kappa \rangle$, we have: $(\forall t \in J)a_t^{\alpha} \in A_{n(\alpha)}^{\alpha}$.

Now for every $A \subseteq \kappa$, $a_t \upharpoonright A \stackrel{\text{def}}{=} \langle a_t^{\alpha} : \alpha \in A \rangle \in \Pi_{\alpha \in A} B_{\alpha}'$ is \leq -increasing and $\{A \subseteq \kappa : |\{a_t \upharpoonright A : t \in J\}| \leq \lambda\}$ is an ideal of κ and, as $\lambda = \lambda^{\aleph_0}$, it is \aleph_1 -complete.

So w.l.o.g. $n(\alpha) = n(*)$ (in the case $\{\alpha : n(\alpha) = n(*)\}$ is bounded in κ , we can redefine κ , and λ still satisfies the requirement).

Now we have that (w.l.o.g.):

(**) there is $n(*) < \omega$ such that for each $\alpha < \kappa$ we have: $\{a_i^{\alpha} : i \in J\}$ has ordertype a scattered set of rank $\leq n(*)$ (the point is just that the n(*) is fixed).

We get a contradiction by induction on n(*) (simultaneously for all Boolean algebras and B_{α} , J, and a_{α}^{α}).

The case n(*) = 0 is empty.

The case n(*)>1. There are convex[†] equivalence relations e_{α} on $\{a_i^{\alpha}: t \in J\}$ of order type $\leq \lambda$ or $\leq \lambda^*$ (= the inverse of λ) with each equivalence class scattered of rank $\leq n(*)-1$.

Now e_{α} induces a convex equivalence relation e'_{α} on J, i.e. $t_1e'_2t_2$ iff $a^{\alpha}_{t_1}e_{\alpha}a^{\alpha}_{t_2}$; e'_{α} is convex as $[t_1 \leq t_2 \Rightarrow a^{\alpha}_{t_1} \leq a^{\alpha}_{t_2}]$. Also $\bigcap_{\alpha < \kappa} e'_{\alpha}$ is a convex equivalence relation on J. Now each equivalence class I has power $\leq \lambda$, otherwise we have $\langle a_t : t \in I \rangle$ and apply an induction hypothesis on n(*). Now choose $J' \subseteq J$ which is a set of representatives for $\bigcap_{\alpha < \kappa} e'_{\alpha}$, i.e. such that for each $(\bigcap_{\alpha} e'_{\alpha})$ -equivalence class I we have $|J' \cap I| = 1$. So necessarily $|J'| > \lambda$. Now we choose b^{α}_{t} for $\alpha < \kappa$, $t \in J'$ such that:

$$b_t^{\alpha} \in \{a_s^{\alpha} : s \in t/e_{\alpha}'\},$$

$$b_{t_1}^{\alpha} = b_{t_2}^{\alpha} \Leftrightarrow t_1 e_{\alpha}' t_2.$$

This is easy to do. Now apply our induction hypothesis to $(\langle b_t^{\alpha} : t \in J' \rangle : t \in J' \rangle, n(*) - 1$.

Now we come to the main case.

The case n(*)=1. As we can replace $\Pi_{\alpha<\kappa} B_{\alpha}$ and $\langle a_{t}^{\alpha}: \alpha<\kappa, t\in J\rangle$ by $\Pi_{\alpha\in A} B_{\alpha}$ and $\langle a_{\alpha}^{t}: \alpha\in A, t\in J\rangle$ as long as $|\{a_{t}\upharpoonright A: t\in J\}\|>\lambda$; and as we can replace the a_{t}^{α} 's by $(1_{B_{\alpha}}-a_{t}^{\alpha})$'s, w.l.o.g.

(\bigoplus) $\langle a_t^{\alpha} : t \in J \rangle$ is well ordered of order type $\leq |T_{\alpha}| = \lambda_{\alpha}$ (for each α).

So w.l.o.g. $J \subseteq \Pi_{\alpha < \kappa} \lambda_{\alpha}$ is ordered by $\eta \le \nu \Leftrightarrow \Lambda_{\alpha} \eta(\alpha) \le \nu(\alpha)$. Let χ be regular large enough, $<_{\chi}^*$ a well order of $H(\chi)$ (the family of sets of hereditary power $<\chi$).

[†] An equivalence relation e on I is convex iff $\forall x \in I [x/e \text{ is a convex set}]$.

Let $N_0 < (H(\chi), \in, <^*_{\chi}, J)$, $2^{\kappa} \subseteq N_0$, $[|N_0|]^{\kappa} \subseteq N_0$, $||N_0|| = 2^{\kappa}$. Let $N_0 < M < (H(\chi), \in, <^*_{\chi}, J)$, $||M|| = \lambda$, $[|M|]^{\aleph_0} \subseteq M$, $\lambda + 1 \subseteq M$.

Let $\langle \langle \gamma_i^{\delta} : i < \text{cf } \delta \rangle : \delta < \lambda \rangle$ be the $<_{\chi}^*$ -first sequence such that $\langle \gamma_i^{\delta} : i < \text{cf } \delta \rangle$ is increasing with limit δ . Choose $\eta \in J - |M|$ and define (for N < M, such that $\kappa + 1 \subseteq N$): $\rho_N(\eta) \in {}^{\kappa} |N|$, $[\rho_N(\eta)](\alpha) \stackrel{\text{def}}{=} \text{Min}\{\gamma \in N : \gamma \geq \eta(\alpha)\}$. Note: if $\eta(\alpha) \notin N$ then $\text{cf}[(\rho_N(\eta))(\alpha)]$ is a regular cardinal which belongs to N but is not included in it and is $> \kappa$. We choose by induction on n, $\zeta_n < \lambda$ as follows: letting $N_n = \text{Skolem Hull}(N_0 \cup \{\zeta_0, \ldots, \zeta_{n-1}\})$, if

$$\{\operatorname{cf}[[\rho_{N_n}(\eta)](\alpha)]: [\rho_{N_n}(\eta)](\alpha) \notin N_n\}$$

is a singleton $\{\mu_n\}$ (or is empty and we let $\mu_n = \kappa$), we can choose $\zeta_n < \mu_n$ such that if $\alpha < \kappa$, $[\rho_{N_n}(\eta)](\alpha) \notin N_n$, then

$$\gamma_{\zeta_n}^{\rho_{N_n}(\eta)(\alpha)} > \eta(\alpha)$$

(see above on $\langle\langle \gamma_{\zeta}^{\delta}: \zeta > \delta \rangle\rangle$). First assume ζ_n is defined for each n.

So for every α , $\langle [\rho_{N_n}(\eta)](\alpha) : n \rangle$ decreases and stops only when $\rho_{N_n}(\eta)(\alpha) \in N_n$. So if we succeed in continuing a step, then $\Lambda_\alpha \eta(\alpha) = \rho_{N_k}(\eta)(\alpha) \in N_k$ for some $k_\alpha < \omega$, so $\eta \subseteq$ the Skolem Hull of $N_0 \cup \{\zeta_n : n < \omega\}$. Of course, $\langle \zeta_n : n < \omega \rangle$ depends on η but there are $\leq \lambda^{\aleph_0}$ such sequences, and

$$||N_0 \cup \{\zeta_n : n < \omega\}|| \leq 2^{\kappa};$$

so for some $\eta \in J$, and $n, \zeta_0, \ldots, \zeta_{n-1}$ are defined but not ζ_n . So for this $n \{ \text{cf}[(\rho_{N_n}(\eta)](\alpha)) : \alpha < \kappa \}$ has more than one element, i.e. for some $\alpha_1, \alpha_2 < \kappa$:

$$\mu_1 \stackrel{\text{def}}{=} \operatorname{cf}(\rho_{N_n}(\eta)(\alpha_1)) < \mu_2 \stackrel{\text{def}}{=} \operatorname{cf}(\rho_{N_n}(\eta)(\alpha_2)).$$

Choose ζ^* , sup $[N_n \cap \mu_1] < \zeta^* < \mu_1$, let

$$N^* = \text{Skolem Hull of } (N_n \cup \{\zeta^*\}).$$

So in N^* , there is ζ^* such that:

$$\sup[N_n\cap(\rho_{N_n}(\eta))(\alpha_1)]<\zeta^*<[\rho_{N_n}(\eta)](\alpha_1).$$

Now

- (a) $\sup N^* \cap \mu_2 = \sup(N_n \cap \mu_2)$ (as $\mu_1, \mu_2 \in N_n, \mu_1 < \mu_2$ are regular).
- (α)' Similarly for

$$\sup[N^* \cap (\rho_{N_n}(\eta))(\alpha_2)] = \sup[N_n \cap (\rho_{N_n}(\eta))(\alpha_2)].$$

(β) $N_n \models (\forall (x)) \text{ (if } x \text{ is an ordinal } < [\rho_{N_n}(\eta)](\alpha_1) \text{ then there is } y \in J, \text{ such that }$

$$x < y(\alpha_1) < [\rho_{N_n}(\eta)(\alpha_1)],$$

$$y(\alpha_2) < [\rho_N(\eta)(\alpha_2)).$$

Note: $[\rho_{N_n}(\eta)](\alpha_1)$, $[\rho_{N_n}(\eta)](\alpha_2)$ are in N_n , though not the function $\rho_{N_n}(\eta)$! Hence also N^* satisfies this formula; now apply it to $x = \gamma_{\zeta^*}^{\delta}$ where $\delta = [\rho_{N_n}(\eta)](\alpha_1)$ to get y = v. So $v(\alpha_1) > \eta(\alpha_1)$ [choice of ζ^*], $v(\alpha_2) < \eta(\alpha_2)$ [as $v(\alpha_1) \in N^* \cap [\rho_{N_n}(\eta)](\alpha_2)$ and $(\alpha)'$]. This contradicts our assumption on J.

2.3. Conclusion. If e.g. $\lambda = \lambda^{\aleph_0}$, $\lambda^{\kappa} > \lambda + 2^{\kappa}$, then for some B_i , B_i' , $i < \kappa$,

Length
$$(B_i) = \lambda = \text{Length } B_i$$
,

Length
$$\left(\prod_{i < \kappa} B_i'\right) = \lambda < \lambda^{\kappa} = \text{Length}\left(\prod_{i < \kappa} B_i\right)$$
.

§3. On depth of Boolean algebras

3.1. Definition. The depth of a Boolean algebra is

$$Dp(B) \stackrel{\text{def}}{=} \sup\{|X|: X \text{ is well ordered}\}.$$

We shall show that, in some universes of set theory, $Dp(\Pi_{i < \kappa} B_i/D)$ is $</> \Pi_{i < \kappa}(Dp(B_i))/D$ for some Boolean algebra B_i and ultrafilter D.

3.1A. Remark. Length $(\Pi_{i < \kappa} B_i/D) \ge \Pi_{i < \kappa} \operatorname{length}(B_i)/D$ for any ultrafilter D on κ , B_i Boolean algebras, by too theorem as observed by S. Koppleberg and the author independently.

REMARK. Of course, for some regular ultrafilter D on λ , in ω^{λ}/D there is a decreasing sequence of length 2^{λ} (see e.g. [ShA 1, VI, NB]) so the problem is to find cases in which this fails; necessarily GCH cannot hold.

- 3.2. THEOREM. Suppose CH, $\lambda > \aleph_1$, P is the product of λ Sacks forcing with countable support: $\Pi_{i < \lambda} Q_i$. Then in V^P :
 - (a) $2^{\aleph_0} = (\lambda^{\aleph_0})^V$,
 - (b) for some ultrafilter D on ω (non-principal) in $(\omega, <)^{\omega}/D$ there is no increasing chain of length \aleph_2 (nor decreasing),
 - (c) if B_0 is atomless countable Boolean algebra, then in B_0^{ω}/D there is no increasing (nor decreasing) chain of length \aleph_2 .

PROOF. By a theorem of Laver, there is an ultrafilter D on ω (non-principal) such that D is an ultrafilter also in V^P (more accurately — generates one). This is our D.

Let $p \in P$, $p \models ``(f_{\alpha}/D : \alpha < \aleph_2)$ a counterexample". For each $\alpha < \aleph_2$, there is p_{α} , $p \leq p_{\alpha} \in P$, such that above p_{α} , $f_{\alpha} (\in {}^{\omega}\omega)$ (or $\in {}^{\omega}B_0$) is a name in $\Pi_{i \in I_{\alpha}} Q_i$, $I_{\alpha} \subseteq \lambda$, $|I_{\alpha}| = \aleph_0$, $p_{\alpha} \in \Pi_{i \in I_{\alpha}} Q_i$. As $\tilde{V} \models CH$ w.l.o.g. $\langle I_{\alpha} : \alpha < \omega_2 \rangle$ is a Δ -system with heart I, and $(I_{\alpha}, p_{\alpha}, f_{\alpha})$ for $\alpha < \aleph_2$ are pairwise isomorphic over I. For $\alpha < \beta$ we know $p \models ``f_{\alpha}/D < f_{\beta}/D$ " so there is $A_{\alpha,\beta} \in D$, w.l.o.g. from V such that

$$p \Vdash \mathcal{A}_{\alpha,\beta} \in D \land \bigwedge_{n \in A_{\alpha,\beta}} f_{\alpha}(n) < f_{\beta}(n)$$
".

We now know p_{α} , p_{β} are compatible (definition of P) so there is $p_{\alpha,\beta} \geq p_{\alpha}$, p_{β} , $p_{\alpha,\beta} \in P$. W.l.o.g $p_{\alpha,\beta}$ force a value to $A_{\alpha,\beta}$, say $B_{\alpha,\beta}$. So $p_{\alpha,\beta} \models \text{``} \bigwedge_{n \in B_{\alpha,\beta}} f_{\alpha}(n) < f_{\beta}(n)$ ''. Now every permutation of λ induces an automorphism of $P = \prod_{i < \lambda} Q_i$; let h be such permutation mapping I_{α} onto I_{β} over I and interchanging (p_{α}, f_{α}) with (p_{β}, f_{β}) . So $h(p_{\alpha,\beta}) \geq h(p_{\alpha})$, $h(p_{\beta})$ but $h(p_{\alpha}) = p_{\beta}$, $h(p_{\beta}) = p_{\alpha}$, etc., so

$$p \leq h(p_{\alpha,\beta}) \parallel \ \ \ \ \bigwedge_{n \in B_{\alpha,\beta}} f_{\beta}(n) < f_{\alpha}(n)$$
";

contradiction.

REMARK. The argument is good for any antisymmetric relation.

3.3. Theorem. Let $\lambda = \lambda^{<\lambda} < \mu = \mu^{<\mu}$ be such that $(\forall \kappa)[\kappa < \mu \Rightarrow \kappa^{<\lambda} < \mu]$, $\diamondsuit_{\{\delta < \mu^+ : cf \delta = \mu\}}, \diamondsuit_{\mu}$. For a set I of ordinals we let

$$Q_I = \{ f : f \text{ a partial function from } I \text{ to } \lambda \text{ of power } < \lambda \},$$

order: inclusion.

- (A) In $V^{Q_{\mu^+}}$ there is a uniform regular ultrafilter D on λ such that:
 - (a) in $(\lambda, <)^{\lambda}/D$ there is no increasing chain of length μ^+ ,
 - (b) if \mathfrak{B} is the Boolean algebra of finite cofinite subsets of λ then in \mathfrak{B}^{λ}/D there is no increasing (or decreasing) sequence of length μ^{+} ,
 - (c) in (b) we can let \mathfrak{B} be any Boolean algebra \mathfrak{B} (hence any partial order) of power λ .
- (B) In $V^{Q_{\mu^+}}$, $\lambda = \lambda^{<\lambda}$, $2^{\lambda} = \mu^+$.

Proof. Let

- $\operatorname{ap}_I = \{ \underline{D} : \underline{D} \text{ a } Q_I \text{-name of an ultrafilter (regular uniform) on } \lambda$ s.t. for every $\alpha, \underline{D} \cap \mathscr{P}(\lambda) V^{Q_{I \cap \alpha}}$ is a $Q_{I \cap \alpha}$ -name $\}$.
- AP = $\bigcup \{ ap_I : I \subseteq \mu^+, and |I| < \mu \}$, let $\alpha(\mathcal{D})$ be the unique α such that $\mathcal{D} \in ap_{\alpha}$.
- (1) Let $\alpha < \mu^+$. Let a type for $D \in ap_\alpha$ be a pair (M, q) such that:
 - (i) M is a model in V, $|L(M)| + ||M|| \leq \mu$;
 - (ii) q is a Q_{α} -name of a set of formulas (in say m-variables) over M^{λ}/D , finitely satisfiable in it (ultrapower in $V^{Q_{\alpha}}$).

We may omit M.

(2) The type (M, q) is strongly omitted for $D \in \operatorname{ap}_{\alpha} if$ for $\gamma < \mu$, in $V^{Q_{\alpha+\gamma}}$, if we extended D by $< \mu$ sets getting D' still for no $g \in V^{Q_{\alpha+\gamma}}$

$$\bigwedge_{\varphi \in q} \left[\left\{ i < \lambda : M \models \varphi(g)(i) \right\} \in D' \right]$$

[where all parameters of q are functions from λ to M, we compute their value at i].

3.3A. THE GAME LEMMA. In the following game player I has a winning strategy:

it lasts μ^+ stages,

in stage α player I chooses $D_{\alpha} \in ap_{\alpha}$ extending each D_{i} (j < i),

player II chooses a set Γ_{α} of types, each strongly omitted for \mathcal{D}_{α} . In the end player I wins if, for \mathcal{D}_{μ^+} , each $(M, q) \in \Gamma_{\alpha}$ $(\alpha < \mu^+)$ is omitted.

REMARK. We do not use $\diamondsuit_{\{\delta < \mu^+: \text{cf } \delta = \mu\}}$ for 3.3A.

PROOF. By [Sh 162]. (For other applications and formulations see [Sh 107]; on a similar construction see [Sh 326], §3.)

- 3.3B. The Game⁺. We can also demand on the D_{α} (from player I)
- (*) if $I \subseteq \mu^+$, cf $\alpha = \mu$, $|I| < \mu$, \underline{E} a Q_I -name of an ultrafilter, $\underline{E} \upharpoonright (I \cap \alpha) \subseteq D_{\alpha}$, then some order preserving $h: I \xrightarrow[]{} J \subseteq \alpha$ the h-image of \underline{E} is $\subseteq D_{\alpha}$, $h \upharpoonright (I \cap \alpha) = \mathrm{id}_{I \cap \alpha}$.

[Hence D_{α} (cf $\alpha = \mu$) is a good ultrafilter.]

PROOF OF THE THEOREM 3.3. Let \mathfrak{B} be a fixed order of power λ of order type $\zeta + 1$ or $(\zeta + 1)^*$. Build $D_{\alpha} \in \operatorname{ap}_{\alpha}$ increasing with α , by induction on α according to the winning strategy of the game of 3.3A.

In stage δ , cf $\delta = \mu$, $\Diamond_{\{\delta < \mu^+: \text{cf }\delta = \mu\}}$ gives us the guess $\langle \int_{\alpha}^{\delta} / \mathcal{D}_{\delta} : \alpha < \delta \rangle$ which is

(forced to be) $<_{\mathcal{D}_{\delta}}$ -increasing, f_{α}^{δ} a Q_{α} -name of a function from λ to \mathfrak{B} . Now we define (M, q):

$$M = \mathfrak{B},$$

$$q = \{ \int_{\alpha}^{\delta} / \mathcal{Q}_{\delta} \le x / D_{\delta} : \alpha < \delta \}$$

$$\cup \left\{ x / D_{\delta} \le h / \mathcal{Q}_{\delta} : h \in ({}^{\lambda}\mathfrak{B})^{VQ_{\alpha}} \text{ and } \bigwedge_{\alpha < \delta} f_{\alpha}^{\delta} / \mathcal{Q}_{\delta} < h / \mathcal{Q}_{\delta} \right\}$$

(remember that q is a Q_{δ} -name [and if $\langle f_{\alpha}^{\delta}/Q_{\delta} : \alpha < \delta \rangle$ is $<_{Q_{\delta}}$ -decreasing, we invert the order of \mathfrak{B} and continue similarly; so we ignore this].

We should prove that it is strongly omitted; so we let $G \subseteq Q_{\delta}$ be generic over V and work in V[G]. Let $\gamma < \mu$ and \underline{D}' be generated by $D_{\delta} \cup \{\underline{A}_i : i < i(*) < \mu\}$ where \underline{A}_i is a $Q_{\delta+\gamma}/G$ -name.

So assume g is a $Q_{\delta+\lambda}/G$ -name, $p \in Q_{\delta+\lambda}/G$, $p \Vdash "g$, $\{A_i : i < i(*) < \mu\}$ is a counterexample and w.l.o.g. $\{A_i : i < i(*) < \mu\}$ is closed under finite intersection". So for each $\alpha < \delta$ there are p_{α} , $j(\alpha)$ such that:

- (a) $p \leq p_{\alpha} \in Q_{\alpha+\lambda}/G$,
- (b) $p_{\alpha} \Vdash \text{``}[\{i: f_{\alpha}^{\delta}(i) < g(i)\} \supseteq A_{j}(\alpha) \cap B_{\alpha}, B_{\alpha} \in D, j(\alpha) < i(*)$ ''.

So for some unbounded $Z \subseteq \delta$, for $\alpha \in \mathbb{Z}$, $p_{\alpha} = p^*$, $j(\alpha) = j(*)$ (or really $p_{\alpha} \upharpoonright [\alpha, \alpha + \gamma] = p^*$).

Now for each $i < \lambda$ let $T_i \subseteq \mathfrak{B}$ be the set of $b \in \mathfrak{B}$ such that:

$$p^* \not\models \neg [g(i) = b \land i \in A_{j(\bullet)}].$$

Clearly $A^* = \{i : T_i \neq \emptyset\} \in D$. And by (b) above

$$\alpha \in \mathbb{Z} \& i \in A^* \cap B_\alpha \& b \in T_\alpha \Longrightarrow \mathfrak{B} \models f_\alpha^\delta(i) \leqq b.$$

So for $\alpha \in \mathbb{Z}$:

(*)
$$\langle b_i : i < \lambda \rangle \in (\Pi T_i)^{VQ_i} \Rightarrow f_\alpha^\delta / D \leq \langle b_i : i < \lambda \rangle / D.$$

Remember \mathfrak{B} is $\zeta + 1$ or $(\zeta + 1)^*$, $\zeta < \lambda^+$. So \mathfrak{B} is a well ordering (linear) or inverse well ordering with minimal element. Let $b_i = \inf T_i$, then

$$\bigwedge_{\alpha} f_{\alpha}^{\delta}/D \leq \delta/D \quad \text{where } \delta = \langle b_i : i < \lambda \rangle \in (\lambda \lambda)^{VQ_{\alpha}}$$

and so $x/D < b/D \in q$, but this is impossible. This proves 3.3(A)(a).

END OF THE PROOF OF 3.3(A)(b). Let \mathfrak{B} be the finite cofinite subsets of λ ; if in \mathfrak{B}^{λ}/D there is a monotonic sequence $\langle f_i/D : \alpha < \mu^+ \rangle$ then w.l.o.g. it is increasing (otherwise use $1_{\mathfrak{B}} - f_{\alpha}/D$) and w.l.o.g. $\{i : f_{\alpha}(i) \text{ is finite}\} \in D$ for each

 $\alpha < \lambda$ (if it fails for α_0 use $\langle f_{\alpha_0+\alpha}/D - f_{\alpha}/D : \alpha < \lambda \rangle$), hence w.l.o.g. $f_{\alpha}(i)$ is finite for $\alpha < \mu^+$, $i < \lambda$; let $f_{\alpha}^*(i) = |f_{\alpha}(i)|$, hence $\langle f_{\alpha}^*/D : \alpha < \lambda \rangle$ is strictly monotonic and we get a contradiction.

PROOF OF 3.3(A)(c). Use the <-system density for μ^+ which we are allowed to use (see [Sh 162]) and the symmetry in the forming.

3.4. Conclusion. For the forcing notion from 3.3: in $V^{Q_{\mu}+}$, D is a regular ultrafilter on λ (even good) and \mathfrak{B} the Boolean algebra we have

$$\lambda = \text{Depth } B \text{ (obtained)}; \qquad \Pi(\text{Depth } B)/D = \mu^+, \\ \text{Depth}(\Pi B/D) \leq \mu.$$

- 3.5. REMARK. (1) The property of the order \mathfrak{B} we really use in the proof of 3.3(A)(a) is that it is complete not only in V but even in $V^{Q_{\mu^+}}$.
- (2) Instead of μ^+ we can get an inaccessible 2^{λ} . E.g. if μ is strongly inaccessible Mahlo, $\lambda = \lambda^{<\lambda} < \mu$; force with

 $R = \{\underline{D}: \text{ for some } I \subseteq \mu, (\forall \kappa)[\lambda < \kappa < \mu \& \kappa \text{ strongly inaccessible} \\ \Rightarrow |I \cap \kappa| < \kappa] \text{ and } \underline{D} \text{ is a } \underline{Q}_I\text{-name of regular uniform} \\ \text{ultrafilter on } \lambda \text{ such that for every } \alpha, \underline{D} \cap \mathscr{P}(\lambda)^{V^{\underline{Q}_{I \cap \alpha}}} \text{ is a } \underline{Q}_I \cap \alpha\text{-name}\}.$

§4. Spread and entangled orders

- 4.1. Definition. For a Boolean algebra B let s(B), the spread of B, be
- (*) $s(B) \stackrel{\text{def}}{=} \sup\{|Y|: Y \subseteq B \{0\} \text{ and no } y \in Y \text{ belongs to the ideal generated by } Y \{y\}\}$

or equivalently

- (*)' $s(B) = \sup\{c(B') : B' \text{ is a homomorphic image of } B\}$ [where c(B') is the cellularity number of B'].
- 4.2. PROBLEM. So we have, for $\lambda = s(B)$ a limit cardinal, two attainment problems:
 - A. Obtainment. If $s(B) = \lambda$, is there $Y \subseteq B \{0\}$, $|Y| = \lambda$ as in (*)?
- B. Weak Obtainment. If $s(B) = \lambda$, is there a homomorphic image B' of B such that $c(B') = \lambda$?

Note that by [Sh 233]:

4.2C. THEOREM. If s(B) is singular and not obtained, then $2^{cf[s(B)]} > s(B)$.

So the obtainment problem for singular $\mu = s(B)$ is only for the case $2^{cf\mu} > \mu$.

Todorcevic (see Monk [M]) proves that for $\lambda = 2^{\aleph_0}$, we can construct a Boolean algebra B with non-weak obtainment for $s(B) = \lambda$ (if 2^{\aleph_0} is a limit cardinal).

The problem of getting examples for non-obtainment is closely tied in with entangled linear orders and related properties (on these see Todorcevic [T 1]) which has a long historical discussion; see Abraham-Rubin-Shelah [ARS 153] and Bonnet-Shelah [BoSh 210].

Our main conclusion is 4.15.

4.3. OBSERVATION. If s(A) (the spread) is singular and not obtained, then A has no homomorphic image B such that c(B) = s(A), i.e. s(A) is not weakly obtained.

PROOF. If for some homomorphic image B of A, c(B) = s(A), then B has an antichain of power s(A) (by the Erdős–Tarski theorem) hence s(A) is obtained.

- 4.4. OBSERVATION. (1) If s(A) (the spread) is not obtained and is strongly inaccessible, then for some homomorphic image B of A, c(B) = s(A); in fact we have B = A.
- (2) If λ is inaccessible, then there is a Boolean algebra B such that $c(B) = \lambda$ is not obtained.

PROOF. (1) If c(A) = s(A), we finish. If not, c(A) < s(A) hence $(\forall \mu < s(A))\mu^{c(A)} < s(A)$ so (as necessarily $|A| \ge s(A)$; see [Sh 92]) A has an independent subset of cardinality s(A) so s(A) is *obtained*; contradiction.

- (2) Well known.
- 4.5. Remark. We can conclude that the double problem of being obtained is really double only for weakly inaccessibles.
- 4.6. DEFINITION. (1) Ens(λ, μ, κ) means: there are linear orderings $\langle I_{\alpha} : \alpha < \kappa \rangle$ such that:
 - (a) I_{α} is a linear order of power λ ,
 - (b) if $n < \omega$, $\alpha_1 < \cdots < \alpha_n < \kappa$, $w \subseteq \{1, \ldots, n\}$, $t_{\zeta}^l \in I_{\alpha_l}$ for $\zeta < \mu$, $l = 1, \ldots, n$ and $[\zeta_1 \neq \zeta_2 \Rightarrow t_{\zeta_1}^l \neq t_{\zeta_2}^l]$, then for some $\zeta < \xi < \mu$,

$$[l \in w \Rightarrow t_{\zeta}^{l} < t_{\zeta}^{l}],$$

$$[1 \le l \le n \land l \notin w \Rightarrow t_{\zeta}^{l} > t_{\xi}^{l}]$$

- (2) $\operatorname{Ens}_k(\lambda, \mu, \kappa)$ is defined similarly but $n \leq k$.
- (3) If we omit μ , this means $\lambda = \mu$.
- (4) A linear order I is (μ, n) -entangled if: for every pairwise distinct $t_{\zeta}^{l} \in I$ $(1 \le l \le n, \zeta < \mu)$ such that $t_{\zeta}^{1} < t_{\zeta}^{2} < \cdots < t_{\zeta}^{n}$ and $w \subseteq \{1, \ldots, n\}$, there are $\zeta < \xi < \mu$ such that:
 - (*) $1 \le l \le n \Rightarrow [l \in w \Leftrightarrow t_{\zeta}^{l} < t_{\zeta}^{l}].$
 - (5) We omit μ if $|I| = \mu$; we omit n if it holds for all $n < \omega$.
- 4.7. FACT. (1) $\langle I \rangle$ witnesses Ens($\lambda, \mu, 1$) iff I is a linear order of power λ , with no monotonic sequence of length μ .
- (2) $\langle I, J \rangle$ witnesses Ens $(\lambda, \mu, 2)$ iff I, J are linear orders of power λ , with no monotonic sequence of length μ , and I, J are μ -far (i.e. have no isomorphic subsets of power μ) and I, J^* are μ -far where J^* is the reverse order on J.
- (3) If I has density $<\mu$, $\mu=\mathrm{cf}\,\mu$, then in the definition (4.6(4),(5)) of "I is μ -entangled" we can add:

(*)'
$$t_{\zeta}^{l} < t_{\zeta}^{l+1}, t_{\zeta}^{l} < t_{\zeta}^{l+1}$$
 for $l = 1, ..., n-1$.

- (4) If $n \ge 2$, I is (μ, n) -entangled, then I has density $< \mu$.
- (5) If I is μ -entangled, I has κ -pairwise disjoint intervals each of power λ , then Ens (λ, μ, κ) .

PROOF. (3) Let $J \in [I]^{<\mu}$ be dense in I. Suppose that $\langle \langle t_{\zeta}^{l} : l = 1, \ldots, n \rangle$: $\zeta < \mu \rangle$ is as in 4.6(4), (5). For each $l \in \{1, \ldots, n\}$, $t_{\zeta}^{l} < t_{\zeta}^{l+1}$, and so there exists $s_{\zeta}^{l} \in J$ such that $t_{\zeta}^{l} \leq s_{\zeta}^{l} \leq t_{\zeta}^{l+1}$ (and at least one inequality is strict). Define functions h_0 , h_1 on μ by:

$$h_0(\zeta) := \langle s_{\zeta}^1, \dots, s_{\zeta}^{n-1} \rangle,$$

$$h_1(\zeta) := \langle \langle \text{TV}(t_{\zeta}^l = s_{\zeta}^l), \text{TV}(t_{\zeta}^{l+1} = s_{\zeta}^l) \rangle : l = 1, \dots, n \rangle$$

(where TV(-) is the truth value of -). $\operatorname{dom}(h_0) = \mu$ and $|\operatorname{Rang}(h_0)| \le |J|^{n-1} < \mu$. Similarly for h_1 . Since $\operatorname{cf}(\mu) = \mu$, there exists $A \in [\mu]^{\mu}$ such that $h_0 \upharpoonright A$ and $h_1 \upharpoonright A$ are constant. That's to say, for some s^1, \ldots, s^{n-1} in J, $\forall l \in \{1, \ldots, n-1\}, \ \forall \zeta \in A$,

$$t_{\zeta}^{l} \leq s^{l} = s_{\zeta}^{l} \leq t_{\zeta}^{l+1}.$$

Since the t_{ζ}^{l} are given as pairwise distinct, using $h_{1} \upharpoonright A$, one finds that

$$t_{\zeta}^{l} < s^{l} < t_{\zeta}^{l+1}.$$

W.l.o.g. $A = \mu$ (relabelling); now applying 4.6(4), there exists $\zeta < \xi < \mu$ such that $1 \le l \le n \to [l \in w \leftrightarrow t_{\xi}^{l} < t_{\xi}^{l}]$, and in addition, for $l = 1, \ldots, n - 1$,

$$t_{\zeta}^{l} < s_{\zeta}^{l} = s^{l} = s_{\xi}^{l} < t_{\xi}^{l+1}$$
 and $t_{\xi}^{l} < s_{\xi}^{l} = s^{l} = s_{\zeta}^{l} < t_{\zeta}^{l+1}$

so that (*)' holds.

(4) E.g. n = 2.

Suppose that I has density at least μ . By induction on $\zeta < \mu$, choose t_{ζ}^1 , t_{ζ}^2 such that:

- (i) $t_{\zeta}^{1} < t_{\zeta}^{2}$,
- (ii) $t_{\zeta}^{1}, t_{\zeta}^{2} \notin \{t_{\xi}^{1}, t_{\xi}^{2} : \xi < \zeta\},$
- (iii) $(\forall \xi < \zeta)(\forall l \in \{1, 2\})(t_{\varepsilon}^1 < t_{\varepsilon}^l \Leftrightarrow t_{\varepsilon}^2 < t_{\varepsilon}^l).$

Continue to define for as long as possible.

There are two possible outcomes.

Outcome (a): one gets stuck at some $\zeta < \mu$. Define $J := \{t_{\xi}^1, t_{\xi}^2 : \xi < \zeta\}$. So $(\forall t^1 < t^2 \in I - J)(\exists s \in J)(t^1 < s \not\to t^2 < s)$. Since $t^1, t^2 \notin J$, it follows that $t^1 < s \land t^2 > s$ or $t^1 > s \land t^2 < s$. So J is dense in I and is of power $2|\zeta| < \mu$ — a contradiction.

Outcome (b): one can define t_{ζ}^1 , t_{ζ}^2 for every $\zeta < \mu$. Then $\langle t_{\zeta}^1, t_{\zeta}^2 : \zeta < \mu \rangle$, $w = \{1, 2\}$ constitute an easy counterexample to the $(\mu, 2)$ -entangledness of I.

- 4.8. FACT. For a linear order I and regular uncountable cardinal μ , the following are equivalent:
 - (a) I is μ -entangled.
 - (b) $B = \mathrm{BA}_{\mathrm{inter}}(I)$ (the interval Boolean algebra) is μ -narrow, i.e. with no μ pairwise incomparable elements.

PROOF. (a) \Rightarrow (b). By 4.7(4) I has density $< \mu$.

Let $\langle \tau_{\zeta} : \zeta < \mu \rangle$ be distinct elements of B. We know that for each ζ there are an even $n(\zeta) < \omega$ and $t_{\zeta}^{1} < \cdots < t_{\zeta}^{n(\zeta)}$ in I such that $\tau_{\zeta} = \bigcup_{l=1}^{n(\zeta)/2} [t_{\zeta}^{2l-1}, t_{\zeta}^{2l}]$. As cf $\mu > \aleph_{0}$, w.l.o.g. $n(\zeta) = n(*)$; now by 4.6(4) and 4.7(3) for some $\zeta < \xi$, for $l = 1, \ldots, n(*)/2$, $t_{\zeta}^{2l-1} \le t_{\xi}^{2l-1} < t_{\xi}^{2l} \le t_{\zeta}^{2l}$, hence $B \models \tau_{\xi} \subseteq \tau_{\zeta}$ as required.

(b) \Rightarrow (a). Note that I has density $< \mu$.

So let $I_0 \subseteq I$ be a dense subset of I of cardinality $< \mu$. Let for $J \subseteq I$, s < t, from J, $(s, t)_J = \{r \in J : s < r < t\}$. Let

$$J = \{t \in I : \text{if } I \models s < t \text{ then } |(s, t)_I| = \mu \text{ and if } I \models t < s \text{ then } |(t, s)_I| = \mu\}.$$

Clearly

$$(*)_1 |I - J| < \mu \text{ and if } s < t \text{ are in } J \text{ then } |\{r \in J : s < r < t\}| = \mu.$$

[why?

- (a) If $|I-J|=\mu$, let $t_\zeta\in I-J$ be distinct for $\zeta<\mu$, so for each ζ there is $s_\zeta\in I$ such that $s_\zeta< t_\zeta$ & $|(s_\zeta,t_\zeta)_I|<\mu$ or $t_\zeta< s_\zeta$ & $|(t_\zeta,s_\zeta)_I|<\mu$. We can replace $\{t_\zeta:\zeta<\mu\}$ by any subset of the same cardinality so w.l.o.g. $s_\zeta< t_\zeta \Leftrightarrow s_0< t_0$. By symmetry assume $s_0< t_0$, otherwise look at I^* . For each ζ , as I_0 is a dense subset of I there is $r_\zeta\in I_0$ such that $s_\zeta\le r_\zeta\le t_\zeta$. As $|I_0|<\mu=\mathrm{cf}(\mu)$ w.l.o.g. $r_\zeta=r$ for every ζ . As $|[r_\zeta,t_\zeta]_I|\le |(s_\zeta,t_\zeta)_I|+2<\mu$ for each ζ , $|\{\xi<\mu;t_\xi\le t_\zeta\}|\le |[r_\zeta,t_\zeta]_I|<\mu$. Clearly there is $h(\zeta)<\mu$ such that $[\xi<\mu$ & $\xi\ge h(\zeta)\Rightarrow t_\zeta< t_\xi]$ and $C=\{\xi<\mu:(\forall\,\zeta<\xi)h(\zeta)<\xi\}$ is a club of μ , so $\langle t_\zeta:\zeta\in C\rangle$ is strictly increasing, contradicting "I has density $<\mu$ ".
- (b) s < t are in $J \Rightarrow |(s, t)_J| = \mu$ because $t \in J$ implies $\mu \le |(s, t)_I| \le |(s, t)_J| + |I \setminus J|$, but $|I \setminus J| < \mu$ so $\mu = |(s, t)_J|$.
 - (*)₂ There is a dense subset J_0 of J of cardinality $<\mu$ [even easier].

Now let $t_{\zeta}^{l} \in I$ be distinct for $\zeta < \mu, l = 1, ..., n$ and $w \subseteq \{1, ..., n\}$ and we should find $\zeta < \xi$ such that:

$$[l \in w \rightarrow t_{\zeta}^{l} < t_{\xi}^{l}], [l \in \{1, \dots, n\} \setminus w \rightarrow t_{\zeta}^{l} > t_{\xi}^{l}].$$

We, of course, can replace $\{(t_{\zeta}^1, \ldots, t_{\zeta}^n) : \zeta < \mu\}$ by any subset of cardinality μ . So w.l.o.g.

(*)₃ no t_{ζ}^{l} is first or last, and every t_{ζ}^{l} is in J (as $|I - J| < \mu$).

So for each ζ we can find $r_{\zeta}^1, \ldots, r_{\zeta}^{n+1} \in J_0$ such that

^{† [}I has no well-ordered subset of power μ nor an inverse well-ordered subset of power μ . So if I has density $\geq \mu$, then there are disjoint closed-open intervals I_0 , I_1 with density $\geq \mu$. Now for each I_m we choose by induction on $\zeta < \text{density}(I_m) \ a_{\zeta}^m < b_{\zeta}^m$ from I_m such that $[a_{\zeta}^m, b_{\zeta}^m]$ is disjoint from $\{a_{\zeta}^m, b_{\zeta}^m: \xi < \zeta\}$. So $\xi < \zeta \rightarrow [a_{\zeta}^m, b_{\zeta}^m] \not\subseteq [a_{\zeta}^m, b_{\zeta}^m]$. Now $\langle [a_{\zeta}^0, b_{\zeta}^0) \cup (I_1 - [a_{\zeta}^1, b_{\zeta}^1)): \zeta < \mu \rangle$ shows B is not μ -narrow.]

$$r_{\zeta}^{1} < t_{\zeta}^{1} < r_{\zeta}^{2} < t_{\zeta}^{2} < \cdots < t_{\zeta}^{n} < r_{\zeta}^{n+1}.$$

As $|I_0| < \mu = \mathrm{cf}(\mu)$ w.l.o.g. $r_{\zeta}^l = r_l$ for every l.

Let for each $\zeta < \mu$,

$$u_{\zeta} \stackrel{\text{def}}{=} \{l: l \in \{1, \ldots, n\} \text{ and } t_{2\zeta}^{l} < t_{2\zeta+1}^{l}\}.$$

 u_{ζ} has $\leq 2^n$ possible values. W.l.o.g. $u_{\zeta} = u^*$ for every $\zeta < \mu$.

Note $[l \notin u_{\zeta} \& l \in \{1, \ldots, n\} \Rightarrow t_{2\zeta}^{l} > t_{2\zeta+1}^{l}]$ (as $t_{2\zeta}^{l} \neq t_{2\zeta+1}^{l}$). For each $\zeta < \mu$, $l \in \{1, \ldots, n\}$ there is $p_{\zeta}^{l} \in J_{0}$ such that $t_{2\zeta}^{l} < p_{\zeta}^{l} < t_{2\zeta+1}^{l}$ or $t_{2\zeta+1}^{l} < p_{\zeta}^{l} < t_{2\zeta}^{l}$. W.l.o.g. $p_{\zeta}^{l} = p_{l}$.

Now we define by induction on $\zeta < \mu$, for every $l = \{1, \ldots, n\}$, members $q_{\zeta}^{l,1}, q_{\zeta}^{l,2}, q_{\zeta}^{l,3}, q_{\zeta}^{l,4}$ of J such that:

(i) if $l \in u_{\zeta}$ (i.e. $t_{2\zeta}^{l} < t_{2\zeta+1}^{l}$) then

$$r_l < q_{\zeta}^{l,1} < t_{2\zeta}^{l} < q_{\zeta}^{l,2} < p_l < q_{\zeta}^{l,3} < t_{2\zeta+1}^{l} < q_{\zeta}^{l,4} < r_{l+1};$$

(ii) if $l \notin u_{\zeta}$ (but $l \in \{1, ..., n\}$, i.e. $t_{2\zeta} > t_{2\zeta+1}^l$) then

$$r_l < q_{\ell}^{l,1} < t_{2\ell+1}^l < q_{\ell}^{l,2} < p_l < q_{\ell}^{l,3} < t_{2\ell}^l < q_{\ell}^{l,4} < r_{l+1};$$

(iii) $q_{\zeta}^{l,m}$ $(m \in \{1, 2, 3, 4\})$ does not belong to

$$\{q_{\xi}^{k,i}: \xi < \zeta, k \in \{1,\ldots,n\}, i \in \{1,\ldots,4\}\} \cup \{t_{\xi}^{l}: \xi < \zeta, l \in \{1,\ldots,n\}\}.$$

There are no problems by $(*)_1$. It is still possible that for some $\zeta < \xi$,

$$\emptyset \neq \{q_{\ell}^{l,m}: l=1,\ldots,n \text{ and } m=1,2,3,4\} \cap \{t_{\ell}^{l}: l=1,\ldots,n\}$$

for each ζ , there are at most 4n such ξ 's, so there is $h_1(\zeta) < \mu$ such that $h_1(\zeta) \le \xi < \mu \Rightarrow \bigwedge_{l,m} \bigwedge_k q_{\zeta}^{l,m} \ne t_{\xi}^k$. So w.l.o.g.

(*)₄ the sets $\{q_{\zeta}^{l,m}, t_{\zeta}^{l}: l=1,\ldots, n \text{ and } m=1,2,3,4\}$ are pairwise disjoint.

Now we define for every $\zeta < \mu$ a sequence $\langle s_{\zeta}^{l} : l = 1, ..., 4n \rangle$ by defining $s_{\zeta}^{4l-1}, s_{\zeta}^{4l-2}, s_{\zeta}^{4l-3}, s_{\zeta}^{4l}$ for each $l \in \{1, ..., n\}$ as follows:

Case 1. $l \in w, l \in u^*$,

$$\langle s_{\zeta}^{4l-3}, s_{\zeta}^{4l-2}, s_{\zeta}^{4l-1}, s_{\zeta}^{4l} \rangle = \langle t_{2\zeta}^{l}, q_{\zeta}^{l,2}, q_{\zeta}^{l,3}, t_{2\zeta+1}^{l} \rangle.$$

Case 2. $l \notin w, l \in u^*$,

$$\langle s_{\zeta}^{4l-3}, s_{\zeta}^{4l-2}, s_{\zeta}^{4l-1}, s_{\zeta}^{4l} \rangle = \langle q_{\zeta}^{l,1}, t_{2\zeta}^{l}, t_{2\zeta+1}^{l}, q_{\zeta}^{l,4} \rangle.$$

Case 3. $1 \in \mathbb{W}, 1 \notin u^*$,

$$\langle s_{\zeta}^{4l-3}, s_{\zeta}^{4l-2}, s_{\zeta}^{4l-1}, s_{\zeta}^{4l} \rangle = \langle q_{\zeta}^{l,1}, t_{2\zeta+1}^{l}, t_{2\zeta}^{l}, q_{\zeta}^{l,4} \rangle.$$

Case 4. $l \notin w, l \notin u^*$,

$$\langle s_{\zeta}^{4l-3}, s_{\zeta}^{4l-2}, s_{\zeta}^{4l-1}, s_{\zeta}^{4l} \rangle = \langle t_{2\zeta+1}^{l}, q_{\zeta}^{l,2}, q_{\zeta}^{l,3}, t_{2\zeta}^{l} \rangle.$$

Clearly for $\zeta < \mu$, $s_{\zeta}^{1} < \cdots < s_{\zeta}^{n}$ and the s_{ζ}^{l} are pairwise distinct (by $(*)_{4}$) and

$$r_1 < s_{\zeta}^1 < s_{\zeta}^2 < p_1 < s_{\zeta}^3 < s_{\zeta}^4 < r_2 < s_{\zeta}^5 < s_{\zeta}^6 < p_2 < s_{\zeta}^7 < s_{\zeta}^8 < r_3 < \cdots$$

Now for each ζ we define an element x_{ζ} of the Boolean algebra BA(I):

$$x_{\zeta} = \bigcup_{l=1}^{2n} [s_{\zeta}^{2l-1}, s_{\zeta}^{2l}).$$

Note

 $(*)_5$ for l = 1, ..., n:

(a)
$$x_{\zeta} \cap [r_l, p_l) = [s_{\zeta}^{4l-3}, s_{\zeta}^{4l-2}),$$

(b)
$$x_{\zeta} \cap [p_l, r_{l+1}) = [s_{\zeta}^{4l-1}, s_{\zeta}^{4l}).$$

So $\langle x_{\zeta} : \zeta < \mu \rangle$ is a sequence of μ members of the Boolean algebra BA(I). By the assumption (we prove (b) \Rightarrow (a) in Fact 4.9) for some $\zeta < \xi < \mu$, x_{ζ} , x_{ξ} are comparable members of BA(I); i.e. $x_{\zeta} \subseteq x_{\xi}$ or $x_{\xi} \subseteq x_{\zeta}$. We derive our desired conclusion (\otimes) according to the case.

Case A. $x_{\zeta} \subseteq x_{\xi}$.

In this case we shall prove that $2\zeta + 1$, $2\xi + 1$ are the ordinals we are looking for; i.e. conditions (α), (β), (γ) below hold, and we shall check those, thus finishing this case.

Condition α . $2\zeta + 1 < 2\xi + 1$.

[Trivial by $\zeta < \xi$.]

Condition β . If $l \in w$ then $t_{2\zeta+1}^l < t_{2\zeta+1}^l$.

Possibility $\beta 1$. $l \in u^*$.

Then $t_{2\zeta+1}^l = s_{\zeta}^{4l}$, $t_{2\zeta+1}^l = s_{\zeta}^{4l}$ (check the definition of the s's); now by (*)₅(b):

$$x_{\zeta} \cap [p_{l}, r_{l+1}) = [s_{\zeta}^{4l-1}, s_{\zeta}^{4l}),$$

hence (case 1 above)

$$x_{\zeta} \cap [p_l, r_{l+1}) = [q_{\zeta}^{l,3}, t_{2\zeta+1}^l);$$

and

$$x_{\xi} \cap [p_l, r_{l+1}) = [s_{\xi}^{4l-1}, s_{\xi}^{4l}),$$

hence (case 1 above)

$$x_{\xi} \cap [p_l, r_{l+1}) = [q_{\xi}^{l,3}, t_{2\xi+1}^l).$$

But as we are in Case A, $x_{\zeta} \subseteq x_{\xi}$ hence $x_{\zeta} \cap [p_l, r_{l+1}) \subseteq x_{\xi} \cap [p_l, r_{l+1})$, which means by the previous sentence $[q_{\zeta}^{l,3}, t_{2\zeta+1}^{l}) \subseteq [q_{\xi}^{l,3}, t_{2\zeta+1}^{l})$, which implies $q_{\xi}^{l,3} \le q_{\zeta}^{l,3}$ and $t_{2\zeta+1}^{l} \le t_{2\zeta+1}^{l}$. But $t_{2\zeta+1}^{l} \ne t_{2\zeta+1}^{l}$ (as $\zeta \ne \xi$) so $t_{2\zeta+1}^{l} < t_{2\zeta+1}^{l}$ as required.

Possibility $\beta 2$. $l \notin u^*$.

Then $t_{2\zeta+1}^l = s_{\zeta}^{4l-2}$, $t_{2\zeta+1}^l = s_{\xi}^{4l-2}$ (check the definition of the s's); now by $(*)_s(a)$:

$$x_{\zeta} \cap [r_l, p_l) = [s_{\zeta}^{4l-3}, s_{\zeta}^{4l-2}),$$

hence (by case 3 above)

$$x_{\zeta} \cap [r_l, p_l) = [q_{\zeta}^{l,1}, t_{2\zeta+1}^l);$$

and

$$x_{\varepsilon} \cap [r_l, p_l) = [s_{\varepsilon}^{4l-3}, s_{\varepsilon}^{4l-2}),$$

hence (by case 3 above)

$$x_{\xi} \cap [r_l, p_l) = [q_{\xi}^{l,1}, t_{2\xi+1}^l).$$

But as we are in Case A, $x_{\zeta} \subseteq x_{\xi}$ hence $x_{\zeta} \cap [r_l, p_l) \subseteq x_{\xi} \cap [r_l, p_l)$, which means by the previous sentence $[q_{\xi}^{l,1}, t_{2\zeta+1}^l) \subseteq [q_{\xi}^{l,1}, t_{2\zeta+1}^l)$, which implies $q_{\xi}^{l,1} \ge q_{\xi}^{l,1}$ and $t_{2\zeta+1}^l \le t_{2\zeta+1}^l$. But $t_{2\zeta+1}^l \ne t_{2\zeta+1}^l$ (as $\zeta \ne \xi$) so $t_{2\zeta+1}^l < t_{2\xi+1}^l$ as required.

Condition γ . If $l \notin w$ (but $l \in \{1, ..., n\}$) then $t_{2\zeta+1}^l > t_{2\zeta+1}^l$.

Possibility $\gamma 1$. $l \in u^*$.

Then $t_{2\zeta}^l = s_{\zeta}^{4l-1}$, $t_{2\xi}^l = s_{\xi}^{4l-1}$ (check the definition of the s's). Now by (*)₅(b):

$$x_{r} \cap [p_{l}, r_{l+1}) = [s_{r}^{4l-1}, s_{r}^{4l}),$$

hence (by case 2 above)

$$x_{\zeta} \cap [p_l, r_{l+1}) = [t_{2\zeta+1}^l, q_{\zeta}^{l,4});$$

and

$$x_{\xi} \cap [p_l, r_{l+1}) = [s_{\xi}^{4l-1}, s_{\xi}^{4l}),$$

hence (by case 2 above)

$$x_{\xi} \cap [p_l, r_{l+1}) = [t_{2\xi+1}^l, q_{\xi}^{l,4}).$$

But as we are in Case A, $x_{\zeta} \subseteq x_{\xi}$ hence $x_{\xi} \cap [p_l, r_{\zeta+1}) \subseteq x_{\xi} \cap [p_l, r_{l+1})$, which means by the previous sentence $[t_{2\zeta+1}^l, q_{\zeta}^{l,4}) \subseteq [t_{2\xi+1}^l, 1_{\xi}^{l,4})$, which implies

 $t_{2\zeta+1}^{l} \ge t_{2\zeta+1}^{l}$ and $q_{\xi}^{l,4} \ge q_{\zeta}^{l,4}$. But $t_{2\zeta+1}^{l} \ne t_{2\zeta+1}^{l}$ (as $\zeta \ne \xi$) so $t_{2\zeta+1}^{l} > t_{2\zeta+1}^{l}$ as required.

Possibility $\gamma 2$. $l \notin u^*$.

Then $t_{2\zeta+1}^l = s_{\zeta}^{4l-3}$, $t_{2\xi+1}^l = s_{\xi}^{4l-3}$ (check the definition of the s's); now by $(*)_5(a)$:

$$x_{\zeta} \cap [r_l, p_l) = [s_{\zeta}^{4l-3}, s_{\zeta}^{4l-2}),$$

hence

$$x_{\zeta} \cap [r_l, p_l) = [t_{2\zeta+1}^l, q_{\zeta}^{l,2});$$

and

$$x_{\xi} \cap [r_l, p_l) = [s_{\xi}^{4l-3}, s_{\xi}^{4l-2}),$$

hence

$$x_{\xi} \cap [r_l, p_l) = [t_{2\xi+1}^l, q_{\xi}^{l,2}).$$

But as we are in Case A, $x_{\zeta} \subseteq x_{\xi}$, hence $x_{\zeta} \cap [r_l, p_l) \subseteq x_{\xi} \cap [r_l, p_l)$, which means by the previous sentence $[t_{2\zeta+1}^l, q_{\zeta}^{l,2}) \subseteq [t_{2\zeta+1}^l, q_{\xi}^{l,2})$, which implies $t_{2\zeta+1}^l \le t_{2\zeta+1}^l$ and $q_{\zeta}^{l,2} \le q_{\xi}^{l,2}$. But $t_{2\zeta+1}^l \ne t_{2\xi+1}^l$ (as $\zeta \ne \xi$) so $t_{2\zeta+1}^l < t_{2\zeta+1}^l$ as required.

Case B. $x_{\xi} \subseteq x_{\zeta}$.

In this case we shall prove that 2ζ , 2ξ are a pair of ordinals we are looking for; i.e. conditions (α) , (β) , (γ) below hold and we shall check those, thus finishing this case (hence 4.8).

Condition α . $2\zeta < 2\xi$.

[Trivial by $\zeta < \xi$.]

Condition β . If $l \in w$ then $t_{2\zeta}^l < t_{2\zeta}^l$.

Possibility $\beta 1$. $l \in u^*$.

Then $t_{2\zeta}^l = s_{\zeta}^{4l-3}$, $t_{2\zeta}^l = s_{\zeta}^{4l-3}$ (check the definition of the s's); now by $(*)_4(a)$:

$$x_{\zeta} \cap [r_l, p_l) = [s_{\zeta}^{4l-3}, s_{\zeta}^{4l-2}),$$

hence (by case 1 above)

$$x_{\zeta} \cap [r_l, p_l) = [t_{2\zeta}^l, q_{\zeta}^{l,2});$$

and

$$x_{\xi} \cap [r_l, p_l) = [s_{\xi}^{4l-3}, s_{\xi}^{4l-2}),$$

hence (by case 1 above)

$$x_{\xi} \cap [r_l, p_l) = [t_{2\xi}^l, q_{\zeta}^{l,2}).$$

But as we are in Case B, $x_{\zeta} \supseteq x_{\xi}$ hence $x_{\zeta} \cap [r_l, p_l) \supseteq x_{\xi} \cap [r_l, p_l)$, which means by the previous sentence $[t_{2\zeta}^l, q_{\zeta}^{l,2}) \supseteq [t_{2\xi}^l, q_{\xi}^{l,2})$, which implies $t_{2\zeta}^l \le t_{2\xi}^l$ and $q_{\xi}^{l,2} \le q_{\zeta}^{l,2}$. But $t_{2\zeta}^l \ne t_{2\xi}^l$ (as $\zeta \ne \xi$), so $t_{2\zeta}^l < t_{2\xi}^l$ as required.

Possibility $\beta 2$. If $l \notin u^*$ (but $l \in \{1, ..., n\}$ then $t_{2\zeta}^l = s_{\zeta}^{4l-1}$, $t_{2\zeta}^l = a_{\zeta}^{4l-1}$ (check the definition of the s's); now by $(*)_5(b)$:

$$x_{\xi} \cap [p_l, r_{l+1}) = [s_{\zeta}^{4l-1}, s_{\zeta}^{4l}),$$

hence (by case 3 above)

$$x_{\zeta} \cap [p_l, r_{l+1}) = [t_{2\zeta}^l, q_{\zeta}^{l,4});$$

and

$$x_{\xi} \cap [p_l, r_{l+1}) = [s_{\xi}^{4l-1}, s_{\xi}^{4l}),$$

hence (by case 3 above)

$$x_{\xi} \cap [p_l, r_{l+1}) = [t_{2\xi}^l, q_{\xi}^{l,4}).$$

But as we are in Case B, $x_{\zeta} \supseteq x_{\xi}$ hence $x_{\zeta} \cap [p_l, r_{l+1}) \supseteq x_{\xi} \cap [p_l, r_{l+1})$, which means by the previous sentence $[t_{2\zeta}^l, q_{\zeta}^{l,4}) \supseteq [t_{2\xi}^l, q_{\xi}^{l,4})$, which implies $t_{2\zeta}^l \le t_{2\xi}^l$ and $q_{\xi}^{l,4} \le q_{\xi}^{l,4}$. But $t_{2\zeta}^l \ne t_{2\xi}^l$ (as $\zeta \ne \xi$), so $t_{2\zeta}^l < t_{2\xi}^l$ as required.

Condition γ . $l \notin w$ (but $l \in \{1, ..., n\}$), then $t_{2\xi}^l > t_{2\xi}^l$.

Possibility $\gamma 1$. $l \in u^*$.

Then $t_{2\zeta}^l = s_{\zeta}^{4l-2}$, $t_{2\xi}^l = s_{\xi}^{4l-2}$ (check the definition of the s's); now by (*)₅(a):

$$x_{\zeta} \cap [r_l, p_l) = [s_{\zeta}^{4l-3}, s_{\zeta}^{4l-2}),$$

hence (by case 2 above)

$$x_{\zeta} \cap [r_l, p_l) = [q_{\zeta}^{l,1}, t_{2\zeta}^l);$$

and

$$x_{\xi} \cap [r_l, p_l) = [s_{\xi}^{4l-2}, s_{\xi}^{4l-2}),$$

hence (by case 2 above)

$$x_{\varepsilon} \cap [r_l, p_l) = [q_{\varepsilon}^{l,1}, t_{2\varepsilon}^l).$$

But as we are in Case B, $x_{\zeta} \supseteq x_{\xi}$ hence $x_{\zeta} \cap [r_l, p_l) \supseteq x_{\xi} \cap [r_l, p_l)$, which means by the previous sentence $[q_{\zeta}^{l,1}, t_{2\zeta}^{l}) \supseteq [q_{\xi}^{l,1}, t_{2\xi}^{l})$, which implies $q_{\zeta}^{l,1} \le q_{\xi}^{l,1}$ and $t_{2\xi}^{l} \le t_{2\zeta}^{l}$. But $t_{2\zeta}^{l} \ne t_{2\xi}^{l}$ (as $\zeta \ne \xi$), so $t_{2\zeta}^{l}$ as required.

Possiblity $\gamma 2$. $l \notin u^*$.

Then $t_{2\zeta}^l = s_{\zeta}^{4l}$, $t_{2\zeta}^l = s_{\zeta}^{4l}$ (check the definition of the s's); now by (*)₅(b):

$$x_{\zeta} \cap [p_l, r_{l+1}) = [s_{\zeta}^{4l-1}, s_{\zeta}^{4l}),$$

hence

$$x_{\zeta} \cap [p_l, r_{l+1}) = [q_{\zeta}^{l,3}, t_{2\zeta}^l);$$

and (by case 4 above)

$$x_{\xi} \cap [p_l, r_{l+1}) = [s_{\xi}^{4l-1}, s_{\xi}^{4l}),$$

hence (by case 4 above)

$$x_{\xi} \cap [p_l, r_{l+1}) = [q_{\xi}^{l,3}, t_{2\xi}^l).$$

But as we are in Case B, $x_{\zeta} \supseteq x_{\xi}$ hence $x_{\zeta} \cap [p_l, r_{l+1}) \supseteq x_{\xi} \cap [p_l, r_{l+1})$, which means by the previous sentence $[q_{\zeta}^{l,3}, t_{2\zeta}^{l}) \supseteq [q_{\xi}^{l,3}, t_{2\xi}^{l})$, which implies $q_{\zeta}^{l,3} \le q_{\xi}^{l,3}$ and $t_{2\xi}^{l} \le t_{2\zeta}^{l}$. But $t_{2\zeta}^{l} \ne t_{2\xi}^{l}$ (as $\zeta \ne \xi$), so $t_{2\xi}^{l} < t_{2\zeta}^{l}$ as required.

So we finish the proof of 4.8.

- 4.9. FACT. (1) There is an entangled linear order $A \subseteq \mathbf{R}$ of power $cf(2^{\aleph_0})$.
- (2) Generalization to higher cardinals: if there is a linear order of power $cf(2^{\lambda})$ and density λ (e.g. λ strong limit), then there is an entangled linear order of power 2^{λ} and density λ .

Proof. Done independently by Bonnet-Shelah [BoSh 210], Todorcevic [T 1].

- 4.10. FACT. Suppose $\langle \lambda_i : i < \delta \rangle$ is a strictly increasing sequence of regular cardinals, $\Lambda_{i < \delta} \lambda_i < \lambda = \text{cf } \lambda$, $\lambda_i > |\delta|$, D a filter on δ , $\text{cf}(\Pi_{i < \delta} \lambda_i/D) = \lambda$, i.e. there is $\langle f_\alpha : \alpha < \lambda \rangle \subset \Pi_{i < \delta} \lambda_i$ such that for every ultrafilter E extending D one has:
 - (i) $\alpha < \beta < \lambda \Rightarrow f_{\alpha} <_E f_{\beta}$,
 - (ii) $(\forall f \in \Pi_{i < \delta} \lambda_i)(\exists \alpha < \lambda)(f <_E f_\alpha)$.

Suppose $A_i \subseteq \delta$ $(i < \kappa)$ are such that, in $\mathcal{P}(\delta)/D$, $\{A_i : i < \kappa\}$ is independent and for $i < \delta$, $|\{f_{\alpha} \upharpoonright i : \alpha < \lambda\}| < \lambda_i$. Then $\text{Ens}(\lambda, \kappa)$.

4.10A. REMARK. If $\mu > 2^{cf\mu}$ then there are such $\langle \lambda_i : i < \delta \rangle$ and D for $\kappa = 2^{cf\mu}$, $\lambda = \mu^+$ by §7.

PROOF. Let $I = \{ f_{\alpha} : \alpha < \lambda \}$. For each $\zeta < \kappa$ we define a linear order $<_{\zeta}^*$ of I:

$$f_{\alpha} < f_{\beta}$$
 iff for some $i < \delta$:

$$f_{\alpha}(i) \neq f_{\beta}(i) \ \& \ f_{\alpha} \upharpoonright i = f_{\beta} \upharpoonright i \ \& \ [f_{\alpha}(i) < f_{\beta}(i) \Leftrightarrow i \in A_{\zeta}].$$

Let $n < \omega$, $\zeta_1 < \cdots < \zeta_n < \kappa$. For $l = 1, \dots, n$, $t_{\gamma}^l = f_{\alpha(l,\gamma)}$ are pairwise distinct for $\gamma < \lambda$; and let $w \subseteq \{1, \dots, n\}$. Let

$$g_{\nu}(i) \stackrel{\text{def}}{=} \text{Min}\{f_{\alpha(l,\nu)}(i): l \in \{1,\ldots,n\}\},\$$

 $i_{\gamma} \stackrel{\text{def}}{=} \text{Min}\{i : \langle f_{\alpha(l,\gamma)} \upharpoonright i ; l \in \{1, \ldots, n\} \rangle \text{ are pairwise distinct}\}.$

W.l.o.g. $i_{\gamma} = i^*$ for every γ .

Let $B = \{i < \delta : \text{ for every } \xi < \lambda_i, \text{ there are } \lambda \text{ ordinals } \gamma < \lambda \text{ such that } g_{\gamma}(i) > \xi \}.$

CLAIM. $B \in D$.

PROOF. Suppose that $B \notin D$. Then, since $D = \bigcap \{F : F \supset D \& F \text{ is an ultra-filter on } \delta\}$, there is an ultrafilter F on δ , $B \notin F$. So $C := \delta - B \in F$. From the definition of B,

$$(\forall i \in C)(\exists \xi_i < \lambda_i)(\exists \gamma_i < \lambda)(\gamma_i \leq \gamma < \lambda \Rightarrow g_{\gamma}(i) \leq \xi_i).$$

Define $h \in \Pi_{i < \delta} \lambda_i$ by

$$h(i) := \begin{cases} \xi_i + 1 & \text{if } i \in C; \\ 0 & \text{if } i \notin C. \end{cases}$$

 $\langle f_{\alpha}/D : \alpha < \lambda \rangle$ is cofinal in $\Pi_{i < \delta} \lambda_i/D$, hence $\langle f_{\alpha}/F : \alpha < \lambda \rangle$ is cofinal in $\Pi_{i < \delta} \lambda_i/F$, so there exists $\beta < \lambda$ such that

$$h < f_{\beta} \mod F$$
.

W.l.o.g. $\bigcup_{i \in C} \gamma_i < \beta$ [since $C \subseteq \delta$, $|\delta| < \lambda = \mathrm{cf}(\lambda)$ and $\Lambda_{i \in C}(\gamma_i < \lambda)$]. Since $\alpha(l, \zeta)$, $(1 \le l \le n, \zeta < \lambda)$ are pairwise distinct, and $\beta < \lambda$, there exists $\zeta < \lambda$ such that $\Lambda_{l=1}^n (\alpha(l, \zeta) > \beta)$. W.l.o.g. $\bigcup_{i \in C} \gamma_i < \zeta$. So $\Lambda_{l=1}^n (f_\beta < f_{\alpha(l, \zeta)} \mod F)$. That means

$$E := \left\{ i < \delta : \bigwedge_{l=1}^{n} f_{\beta}(i) < f_{\alpha(l,\zeta)}(i) \right\} \in F.$$

So $E = \{i < \delta : f_{\beta}(i) < g_{\zeta}(i)\} \in F$, using the definition of g_{ζ} . Since $h < f_{\beta} \mod F$, it now follows that $\{i < \delta : h(i) < g_{\zeta}(i)\} \in F$ and so $C \cap \{i < \delta : h(i) < g_{\zeta}(i)\} \in F$. Choosing i in this (non-empty) intersection, one obtains

$$g_{\zeta}(i) \leq \xi_i < \xi_i + 1 = h(i) < g_{\zeta}(i),$$

a contradiction. So $B \in D$, proving the claim.

Then choose $i < \delta$ as follows. First note that since $|\{f_{\alpha} \upharpoonright i : \alpha < \lambda\}| < \lambda_i$ for

each $i < \delta$, and $cf(\Pi_{i < \delta} \lambda_i/D) = \lambda$, D cannot contain any bounded subsets of δ . By hypothesis,

$$A := \bigcap_{I \in w} A_{\zeta_I} \cap \bigcap_{I \notin w} (\delta - A_{\zeta_I}) \notin D^*$$

(the dual ideal of D), so $\delta - A \notin D$ and there exists an ultrafilter F on δ such that $F \supset D$ and $A \in F$. Hence $C := \{i < \delta : i^* < i\} \cap A \cap B \in F$ and one can choose $i \in C$.

Then choose i:

$$i^* < i \in B \cap \bigcap_{l \in w} A_{\zeta_l} \cap \bigcap_{\substack{1 \le l \le n \\ l \notin w}} (\delta - A_{\zeta_l}).$$

For each $\xi < \lambda_i$ choose γ_{ξ} such that $g_{\gamma_{\xi}}(i) > \xi$. For some $S \subseteq \lambda_i$ unbounded $\xi_1 < \xi_2 \in S \Rightarrow \bigwedge_{l,m} f_{\alpha(l,\gamma_{\xi})}(i) < f_{\alpha(m,\gamma_{\xi})}(i)$. W.l.o.g. $\langle f_{\alpha(l,\gamma_{\theta})} \upharpoonright i : \xi \in S \rangle$ is constant (by a hypothesis). The conclusion should now be clear.

4.11. FACT. If $\langle \lambda_i : i < \delta \rangle$ is a strictly increasing sequence of regular cardinals $\bigwedge_{i < \delta} \lambda_i < \lambda = \operatorname{cf} \lambda$, $\lambda_i > |\delta|$, D an ultrafilter on δ , $\operatorname{cf}(\prod_{i < \delta} \lambda_i/D) = \lambda$, and there is $\langle f_{\alpha}/D : \alpha < \lambda \rangle <_{D}$ -increasing cofinal in $\prod_{i < \delta} \lambda_i/D$ such that for $i < \delta$ we have $\mu_i \stackrel{\text{def}}{=} |\{f_{\alpha} \upharpoonright i : \alpha < \lambda\}| < \lambda_i$ and $\operatorname{Ens}(\lambda_i, \mu_i)$, then there is an entangled linear order of power λ .

PROOF. Let $\langle f_{\alpha} : \alpha < \lambda \rangle$ exemplify $\operatorname{cf}(\Pi \lambda_i / D) = \lambda$. Let $\langle I_{\eta}^i : \eta \in \Pi_i \rangle$ where $\Pi_i = \{ f_{\alpha} \upharpoonright i : \alpha < \lambda \}$ witness $\operatorname{Ens}(\lambda_i, \mu_i)$; w.l.o.g. I_{η}^i has universe λ_i .

Define <* on $I := \{ f_{\alpha} : \alpha < \lambda \}$:

$$f_{\alpha} < f_{\beta}$$
 iff there is $i < \delta$ such that:

$$f_{\alpha} \upharpoonright i = f_{\beta} \upharpoonright i,$$

$$I_{f_{\alpha} \upharpoonright i}^{i} \models f_{\alpha}(i) < f_{\beta}(i).$$

Checking — easy, choosing $i \in \{i < \delta : i^* < i\} \cap B$ and $S \subset \lambda_i$ in the notation of the proof of 4.10.

- 4.11A. REMARK. So we have another way to get: if $\lambda = \lambda > cf \lambda$, then for some regular $\kappa \in (\lambda, 2^{\lambda})$ there is an entangled order.
- 4.12. FACT. Suppose $\langle \lambda_i : i < \delta \rangle$ is strictly increasing, D the filter of

cobounded subsets of δ , $tcf(\Pi \lambda_i/D) = \lambda$, $\mu < cf \delta$, $\delta < \lambda_0$, $\mu < \lambda_0 < \bigcup_{i < \delta} \lambda_i < Ded \mu$, $2^{\mu} < \lambda$. Then Ens₂(cf(δ), λ).

PROOF. Let J be a dense linear order of power $\bigcup_{i<\delta}\lambda_i$ with a dense subset I of power μ . Let t_ζ^i ($i<\delta$, $\zeta<\lambda_i$) be distinct members of J. Let $\langle f_\alpha;\alpha<\lambda\rangle$ witness $\mathrm{tcf}(\Pi_{i<\delta}\lambda_i/D)=\lambda$. For each α let $I_\alpha=\{t_{f_\alpha(i)}^i:i<\delta\}$. For $\alpha<\lambda$ let $A_\alpha=\{\beta:I_\alpha,I_\beta\text{ are not }\mathrm{cf}(\delta)\text{-far}\}$. Now for each $\beta\in A_\alpha$ there are $K_{\alpha,\beta}\subseteq I_\alpha$, $L_{\alpha,\beta}\subseteq I_\beta$ each of power $\mathrm{cf}(\delta)$ and $h_{\alpha,\beta}$ an isomorphism or anti-isomorphism from $K_{\alpha,\beta}$ onto $L_{\alpha,\beta}$; let $M_{\alpha,\beta}$ be a dense subset of $K_{\alpha,\beta}$ of power $\leq \mu$. Assume $|A_\alpha|=\lambda$. As $2^\mu<\lambda$ for some $A'_\alpha\subseteq A_\alpha$, $|A'_\alpha|=\lambda$ and for some M_α^* , h_α we have: $[\beta\in A'_\alpha\Rightarrow M_{\alpha,\beta}=M_\alpha^*$ & $h_{\alpha,\beta}\upharpoonright M_\alpha^*=h_\alpha]$. Essentially h_α defines uniquely $h_{\alpha,\beta}(x)$ where $x\in \mathrm{Dom}\ h_{\alpha,\beta}$. More fully, let

 $I^{\alpha} \stackrel{\text{def}}{=} \{x \in I_{\alpha} : \text{there is } y \in J, x, y \text{ is single in the Dedekind cut it realizes} \}$

in
$$M_{\alpha}^*$$
, $h_{\alpha}^{"}(M_{\alpha}^*)$ respectively $(\forall z \in M_{\alpha}^*)[z < y \equiv h_{\alpha}(z) < x]$.

Now $[\beta \in A'_{\alpha} \to \text{Dom } h_{\alpha,\beta} \subseteq I^{\alpha} \subseteq I_{\alpha}]$ and $h^{\alpha} \stackrel{\text{def}}{=} \bigcup_{\beta \in A'_{\alpha}} h_{\alpha,\beta}$ is a function from I^{α} to J.

Now define $g^{\alpha} \in \Pi_{i < \delta} \lambda_i$: $g^{\alpha}(i) = \sup\{\zeta < \lambda_i : t^i_{\zeta} \in \text{Rang}(h^{\alpha})\}, \ g^{\alpha}(i) < \lambda_i \text{ as } |\text{Rang } h^{\alpha}| = |\text{Dom } h^{\alpha}| = |I^{\alpha}| \le |I_{\alpha}| \le |\delta| \text{ so } [\beta \in A'_{\alpha} \to f_{\beta} \le g^{\alpha}].$ But $|A'_{\beta}| = \lambda$; contradiction. Hence $|A_{\alpha}| < \lambda$, so we can find an unbounded $A^* \subseteq \lambda$ such that

$$\alpha < \beta \land \alpha \in A^* \land \beta \in A^* \Rightarrow \beta \notin A_{\alpha}$$
.

I.e. we have λ linear orders, each of power $cf(\delta) > \mu$, any two are $cf(\delta)$ -far. By 4.7(2) we finish.

- 4.13. CLAIM. In Claim 4.10 suppose in addition μ is a limit cardinal, $\Pi_{i < \delta} \lambda_i \ge \mu \ge \operatorname{cf} \mu = \lambda$. Then
 - (1) Ens(μ , κ).
 - (2) Moreover, there are $\langle I_{\zeta}: 1+\zeta < \kappa \rangle$ exemplifying Ens (μ, κ) such that:
 - a) for each $\theta < \mu$ there is a linear order of power θ embeddable in every $I_{\mathcal{E}}$;
 - b) each I_{ζ} has dense subsets of power $\sum_{i<\delta} \lambda_i < \mu$.

PROOF. (1) Let
$$\mu = \bigcup_{\alpha < \lambda} \mu_{\alpha}$$
, $\mu_{\alpha} < \mu$, $[\alpha < \beta \Rightarrow \mu_{\alpha} < \mu_{\beta}]$ and $\langle f_{\alpha}/D : \alpha < \lambda \rangle$

[†] Such that if $x \in I$, $\min\{y \in K_{\alpha,\beta}: y > x\}$ is well defined, then it is in $M_{\alpha,\beta}$; similarly with $\max\{y \in K_{\alpha,\beta}: y < x\}$; similarly $h_{\alpha,\beta}^{"}(M_{\alpha,\beta}), L_{\alpha,\beta}$.

be cofinal in $\Pi \lambda_i/D$. So for each α , as $\Pi_{i < \delta} \{ \zeta : f_{\alpha}(i) < \zeta < \lambda_i \}$ has power $\Pi_{i < \delta} \lambda_i \ge \mu$, it has a subset F_{α} of cardinality μ_{α}^+ ; as $\langle f_{\alpha}/D : \alpha < \lambda \rangle$ is cofinal in $\Pi_{i < \delta} \lambda_i/D$, for some $\gamma_{\alpha} < \lambda$,

$$F'_{\alpha} \stackrel{\text{def}}{=} \{ g \in F_{\alpha} : g/D < f_{\gamma_{\alpha}}/D \} \text{ has power } \ge \mu_{\alpha}$$

(and w.l.o.g. $\gamma_{\alpha} = \alpha + 1$). Let $I = \bigcup_{\alpha < \lambda} F'_{\alpha}$ and proceed as before (in 4.10).

- (2) W.l.o.g. $A \stackrel{\text{def}}{=} \bigcap_{\zeta < \kappa} A_{\zeta}$ is such that $\Pi_{i \in A} \lambda_i \ge \mu$. [Why? Let us use $\langle A'_{\zeta} : \zeta < \kappa \rangle$ where $A'_{\zeta} \stackrel{\text{def}}{=} A_0 \cup A_{1+\zeta}$ if $\Pi_{i \in A_0} \lambda_i \ge \mu$ and $A'_{\zeta} = (\delta A_0) \cup A_{1+\zeta}$ if $\Pi_{i \in A_0} \lambda_i < \mu$.] Now we can choose $F_{\alpha} \subseteq \Pi \lambda_i$ such that:
 - (i) $|F_{\alpha}| = \mu_{\alpha}$,
 - (ii) for some $\gamma_{\alpha} < \lambda$, $g \in F_{\alpha} \Rightarrow f_{\alpha} \leq g \leq_{D} f_{\gamma_{\alpha}}$,
 - (iii) $g, h \in F_a \Rightarrow g \upharpoonright (\delta A) = h \upharpoonright (\delta A)$.

So on F_{α} all orders $<_{\zeta}^*$ are the same, and so $\langle (\bigcup_{\alpha<\lambda} F_{\alpha},<_{\zeta}^*):\zeta<\kappa\rangle$ are as required.

4.14. THEOREM. If the conclusion of 4.13(2) holds for $\kappa = 3$ (i.e. pair of orders), then for some Boolean algebra B the spread of B is μ but it is neither obtained nor weakly obtained.

PROOF. By Todorcevic's proof of [M] 1.9 from [M] 1.4 in Monk [M] (also the part on: "s(B/K) is obtained for every ideal K of B" generalized; but see 4.3).

- 4.15. CONCLUSION. If $\theta = \operatorname{cf} \lambda$, $(\forall \chi < \lambda)[\chi^{\theta} < \lambda]$, θ uncountable (or at least $\sup\{\operatorname{cf} \Pi_{i < \theta} \lambda_i : \lambda_i < \lambda\}$ is λ^{θ} or just $\geq \operatorname{cf} \mu$), then:
 - (a) for every μ , $\lambda < \operatorname{cf} \mu \leq \mu \leq \lambda^{\theta}$, $\operatorname{Ens}(\mu, 2^{\theta})$;
 - (b) moreover this is exemplified by $\langle I_{\zeta}; \zeta < 2^{\theta} \rangle$ where every I_{ζ} has density λ and for $\sigma < \mu$ there is an order of power σ embeddable into every I_{ζ} ;
 - (c) for every limit cardinal μ , $\lambda < cf \mu \le \mu \le \lambda^{\theta}$ for some Boolean algebra A, $s(A) = \mu$ but it is not obtained (nor weakly obtained).
- 4.15A. REMARK. We shall return to this in light of the additional information on cofinalities of products of regular cardinals. I.e. if $\mu = \chi^+$, cf $\chi = \theta < \chi$, the conclusion holds.

PROOF. By 9.3, letting D be the cobounded filter on θ and $A_i^* \subseteq \theta$ pairwise disjoint for $i < \theta$, $A_i^* \neq \emptyset \mod D$ there is $\langle \lambda_i : i < \theta \rangle$ a strictly increasing sequence of regular cardinals $< \lambda$ such that $\Pi_{i < \theta} \lambda_i / D$ has cofinality of μ ; so w.l.o.g. $\lambda_i > \Pi_{i < i} \lambda_i$. Let $\langle w_i : i < 2^{\theta} \rangle$ be independent in $\mathcal{P}(\theta)$. Let

 $A_i = \bigcup_{j \in w_i} A_j^*$. Now D, $\langle A_i : i < 2^{\theta} \rangle$, $\langle \lambda_i : i < \theta \rangle$ are as required in 4.13 and we get the conclusions by 4.14.

- 4.16. FACT. In 4.12, suppose in addition of $\chi = \text{cf } \delta < \chi \leq \bigcup_{i < \delta} \lambda_i$. Then we can find $\langle I_{\zeta} : \zeta < \lambda \rangle$ such that:
 - (a) I_{ζ} is a linear order of power χ with a dense subset of power μ ;
 - (b) the linear orders $\{I_{\zeta}; \zeta < \lambda\}$ are pairwise far.

PROOF. Use 4.12, $D = \{A \subset S : \delta - A \text{ is bounded}\}, \chi = \sum_{i < \delta} \chi_i, \chi_i > \sum_{i < i} \chi_i$; replace t_{ζ}^i by χ_i elements.

§5. The basic properties of pcf(a)

NOTATION. Let a, b, c denote sets of regular cardinals. J denotes an ideal (usually on some a), D a filter. For a set A of ordinals with no last element, $J_A^{bd} = \{B \subseteq A : \sup B < \sup A\}$, i.e. the ideal of bounded subsets.

- 5.1. Definition. (1) For a partial order P:
- (a) P is λ -directed if, for every $A \subseteq P$, $|A| < \lambda$, there is $q \in P$ such that $\bigwedge_{p \in A} p \leq q$ (q is an upper bound of A);
- (b) P has true cofinality λ if there is $\langle p_i : i < \lambda \rangle$ cofinal in P, i.e.

$$\bigwedge_{i < j} p_i < p_j, \qquad \forall q \in P \left[\bigvee_i q \leq p_i \right]$$

[and one writes $tcf(P) = \lambda$ for the minimal λ]

(if P is linearly ordered it always has a true cofinality);

- (c) P is endless if $\forall p \in P \exists q \in P[p < q]$ (so if P is endless, in (a), (b), (d) we can replace \leq by <);
- (d) $A \subseteq P$ is a cover if $\forall p \in P \exists q \in A[p \leq q]$;
- (e) $cf(P) = Min\{|A|: A \subseteq P \text{ is a cover}\}.$
- (2) $R^{\kappa,1} = {\lambda : \lambda = \operatorname{cf} \lambda > \kappa}.$
- (3) If D is a filter on S, α_s (for $s \in S$) are ordinals, $f, g \in \Pi_{s \in S} \alpha_s$, then f/D < g/D, $f <_D g$ and $f < g \mod D$ all mean $\{s \in S : f(s) < g(s)\} \in D$. Similarly for \leq , and we do not distinguish between a filter and the dual ideal in such notions. So if J is an ideal on a and $f, g \in \Pi a$,, then $f < g \mod J$ iff $\{\theta \in a : \neg f(\theta) < g(\theta)\} \in J$.
 - (4) For $f, g: S \to \text{Ordinals}, f < g \text{ means } \Lambda_{s \in S} f(s) < g(s); \text{ similarly } f \leq g.$
- 5.2. DEFINITION. (1) For a property Γ of ultrafilters (if Γ is the empty condition, we omit it):

$$\operatorname{pcf}_{\Gamma}(a) = \{\operatorname{tcf}(\Pi a/D): D \text{ is an ultrafilter on } a \text{ satisfying } \Gamma\}$$

(so it is a set of regular cardinals).

- (2) $J^0_{<\lambda}[a] = \{b \subseteq a : \text{ for no ultrafilter } D \text{ on } a \text{ to which } b \text{ belongs is } \operatorname{tcf}(\Pi a/D) \ge \lambda\}.$
 - 5.3. CLAIM. (0) $(\Pi a, <_J)$, $(\Pi a \leq_J)$ are endless.
 - (1) $Min(pcf(a)) \ge Min a$.
 - (2) If $a \subseteq b$ then $pcf(a) \subseteq pcf(b)$; and for any $b, c pcf(c \cup b) = pcf(c) \cup pcf(b)$ and:

$$x \in J^0_{\le \lambda}[b \cup c] \Leftrightarrow x \subseteq c \cup b \land x \cap c \in J^0_{\le \lambda} \quad [c] \land x \cap b \in J^0_{\le \lambda}[b].$$

- (3) (i) if $b \subseteq a$, b finite, then pcf(b) = b and $pcf(a) b \subseteq pcf(a b) \subseteq pcf(a)$;
 - (ii) in addition if $b \subseteq \{\theta \in a : |\theta \cap a| < \aleph_0\}$, then pcf(a b) = pcf(a) b; e.g. $b = \{Min(a)\}$;
 - (iii) in addition if $\lambda > \max b$, and $\langle \Pi(a-b), <_{f \in [a-b]} \rangle$ is λ -directed, then $\langle \Pi a, <_{f \in [a]} \rangle$ is λ -directed.
- (4) If D is an ultrafilter on a such that, for every $\theta \in a$, $(a \theta^+) \in D$, then $cf(\Pi a/D) \ge \sup a$ (and if equality holds, then $\sup a$ is an inaccessible cardinal, D a weakly normal ultrafilter).
- (5) If a has no last element, then there is $\lambda \in pcf(a)$ such that sup $a < \lambda$.
- (6) If D is an ultrafilter on a set S and for $s \in S$, α_s is a limit ordinal then $cf(\Pi_{s \in S} \alpha_s, <_D) = cf(\Pi_{s \in S} cf \alpha_s, <_D) = cf(\Pi_{s \in S} (\alpha_s, <)/D)$, and

$$\operatorname{tcf}\left(\prod_{s\in S}\alpha_{s},<_{D}\right)=\operatorname{tcf}\left(\prod_{s\in S}\operatorname{cf}\alpha_{s},<_{D}\right)=\operatorname{tcf}\left(\prod_{s\in S}(\alpha_{s},<)/D\right).$$

- (7) If D is an ultrafilter on a set S, λ_s a regular cardinal, then $\theta \stackrel{\text{def}}{=} \operatorname{tcf}(\prod \lambda_s, <_D)$ is well defined and $|S| < \min\{\lambda_s : s \in S\}$ implies $\theta \in \operatorname{pcf}\{\lambda_s : s \in S\}$.
- (8) If |pcf(a)| < Min(a), then pcf(a) has a maximal element.
- (9) If |pcf(a)| < Min(a), then pcf(pcf(a)) = pcf(a); more generally, if $c \subseteq pcf(a)$, |a| < Min(a), |c| < Min(a), then $pcf(c) \subseteq pcf(a)$.
- (10) If there is no maximal element in pcf(a), then cf[otp(pcf(a))] > Min(a); moreover, sup pcf(a) is a (weakly) inaccessible cardinal.

Proof. E.g.

(8) Let $b \stackrel{\text{def}}{=} pcf(a)$ and assume b has no last element; then by 5.3(5) there is

 $\lambda \in pcf(b)$, $\lambda > sup(b)$. However, by 5.3(9), b = pcf(a) = pcf(pcf(a)) = pcf(b); hence $\lambda \in b$ — contradiction.

- (9) See 5.10.
- (10) See 5.11.
- 5.4. CLAIM. (1) $J_{\leq \lambda}^0[a]$ is an ideal (of $\mathcal{P}(a)$).
- (2) If $\lambda \leq \mu$, then $J_{<\lambda}^0[a] \subseteq J_{<\mu}^0[a]$.
- (3) If λ is singular, $J^0_{<\lambda}[a] = J^0_{<\lambda^+}[a]$.
- (4) If $\lambda \notin \operatorname{pcf}(a)$, then $J^0_{<\lambda}[a] = J^0_{<\lambda^+}[a]$.
- 5.5. LEMMA. If $Min(a) \ge |a|$, λ a cardinal $> |a|^+$, then $(\Pi a, <_{J^0 < \lambda |a|})$ is λ -directed.

PROOF. By 5.3(3)(iii) w.l.o.g. $|a|, |a|^+ \notin a$ so $\min a > |a|^+$. Note: if $f \in \Pi a, f < f + 1 \in \Pi a$ (i.e. $(\Pi a, <_{J^0 < Ia}]$) is endless). Let $F \subseteq \Pi a, |F| < \lambda$, and we shall prove that for some $g \in \Pi a, (\forall f \in F)(f \leq g \mod J^0 <_{\lambda}[a])$. The proof is by induction on |F|. If |F| is finite, this is trivial. Also if $|F| < \min a$ it is easy: let $g \in \Pi a$ be $g(\theta) = \sup\{f(\theta) : f \in F\}$. So assume $|F| = \mu$, $\min a \leq \mu < \lambda$, so let $F = \{f_i^0 : i < \mu\}$. By the induction hypothesis we can choose by induction on $i < \mu, f_i^1 \in \Pi a$, such that:

- (a) $f_i^0 \leq f_i^1 \mod J_{\leq \lambda}^0[a]$,
- (b) for $j < i, f_i^1 \le f_i^1 \mod J_{<\lambda}^0[a]$.

If μ is singular, there is $C \subseteq \mu$ unbounded, $|C| = \operatorname{cf} \mu < \mu$, and by the induction hypothesis there is $g \in \Pi a$ such that for $i \in C$, $f_i^1 \leq g \mod J_{<\lambda}^0[a]$. Now g is as required:

$$f_i^0 \leq f_i^1 \leq f_{\operatorname{Min}(C-i)}^1 \leq g \mod J_{<\lambda}^0[a].$$

So w.l.o.g. μ is regular, Now we define by induction on $\alpha < |a|^+$, g_{α} , $i_{\alpha} = i(\alpha)$, $\langle b_i^{\alpha} : i < \mu \rangle$ such that:

- (i) $g_{\alpha} \in \Pi a$,
- (ii) for $\beta < \alpha, g_{\beta} \leq g_{\alpha}$,
- (iii) for $i < \mu$ let $b_i^{\alpha} \stackrel{\text{def}}{=} \{ \theta \in a : f_i^1(\theta) > g_{\alpha}(\theta) \}$,
- (iv) for each α , for every $i \in [i_{\alpha}, \mu)$, $b_i^{\alpha} \neq b_i^{\alpha+1}$ (and $i(\alpha) < \mu$).

We cannot carry this definition: by letting $i(*) = \sup\{i_{\alpha} : \alpha < |\alpha|^{+}\}$, then $i(*) < \mu$ since $\mu = \operatorname{cf} \mu$, $\mu \ge \operatorname{Min} a > |a|^{+}$.

We know that $b_{i(\bullet)}^{\alpha} \neq b_{i(\bullet)}^{\alpha+1}$ for $\alpha < |a|^+$ (by (iv)) and $b_{i(\bullet)}^{\alpha} \subseteq a$ (by (iii)) and $[\alpha < \beta \Rightarrow b_{i(\bullet)}^{\beta} \subset b_{i(\bullet)}^{\alpha}]$ (by (ii)), together a contradiction.

Now for $\alpha = 0$ let g_{α} be f_0^1 .

For α limit let $g_{\alpha}(\theta) = \bigcup_{\beta < \alpha} g_{\beta}(\theta)$ (note: $g_{\alpha} \in \Pi a$ as $\alpha < |a|^+ < \text{Min } a$ and a is a set of regular cardinals).

For $\alpha = \beta + 1$, suppose that $\langle b_i^{\beta} : i < \mu \rangle$ is defined. If $b_i^{\beta} \in J_{<\lambda}^0[a]$ for unboundedly many $i < \mu$, then g_{β} is an upper bound for F and the proof is complete. So assume this fails; then there is a bounding $i(\beta) < \mu$ such that $b_{i(\beta)}^{\beta} \notin J_{<\lambda}^0[a]$. As $b_{i(\beta)}^{\beta} \notin J_{<\lambda}^0[a]$, for some ultrafilter D on a, $b_{i(\beta)}^{\beta} \in D$ and $\mathrm{cf}(\Pi a/D) \geq \lambda$. Hence $\{f_i^1/D : i < \mu\}$ has a bound h_{α}/D , $h_{\alpha} \in \Pi a$. Let us define $g_{\alpha} \in \Pi a$:

$$g_{\alpha}(\theta) = \text{Max}\{g_{\beta}(\theta), h_{\alpha}(\theta)\}.$$

Now (i), (ii) hold trivially and b_i^{α} is defined by (iii). Why does (iv) hold with $i_{\alpha} := i(\beta)$? Suppose $i(\beta) \le i < \mu$. As $f_{i(\beta)}^1 \le f_i^1 \mod J_{<\lambda}^0[a]$ clearly $b_{i(\beta)}^{\beta} \subseteq b_i^{\beta} \mod J_{<\lambda}^0[a]$. Moreover $J_{<\lambda}^0[a]$ is disjoint to D (by its definition) so $b_{i(\beta)}^{\beta} \in D$ implies $b_i^{\beta} \in D$.

On the other hand, b_i^{α} is $\{\theta \in a : f_i^1(\theta) > g_{\alpha}(\theta)\}$ which is equal to $\{\theta \in a : f_i^1(\theta) > g_{\beta}(\theta), h_{\alpha}(\theta)\}$, which does not belong to $D(h_{\alpha}$ was chosen such that $f_i^1 \leq h_{\alpha} \mod D$). We can conclude $b_i^{\alpha} \notin D$, whereas $b_i^{\beta} \in D$; so they are distinct.

Now we have said that we cannot carry the definition for all $\alpha < |a|^+$, so we are stuck at some α ; by the above α is successor, say $\alpha = \beta + 1$, and g_{β} as required to bound F.

5.6. LEMMA. If Min $a \ge |a|$, D is an ultrafilter on a and $\lambda = \text{tcf}(\Pi a, <_D)$, then for some $b \in D$, $(\Pi b, <_{J^0 \setminus \lambda^0}]$ has true cofinality λ . (So $b \in J^0_{<\lambda^+}[a] - J^0_{<\lambda}[a]$.)

PROOF. Again w.l.o.g. Min $a > |a|^+$; and we know $\lambda \ge \text{Min } a$. Let $\langle f_i/D : i < \lambda \rangle$ be increasing unbounded in $\Pi a/D$ (so $f_i \in \Pi a$). By 5.5 w.l.o.g. $(\forall j < i)(f_j < f_i \mod J^0_{<\lambda}[a])$. Now 5.6 follows from

- 5.7. LEMMA. Suppose $|a| < \min(a)$, $f_i \in \Pi a$, $f_i < f_j \mod J_{<\lambda}^0[a]$ for $i < j < \lambda$, and there is no $g \in \Pi a$ such that for every $i < \lambda$, $f_i < g \mod J_{<\lambda}^0[a]$. Then there are b_i $(i < \lambda)$ such that:
 - (A) $b_i \subseteq a, b_i \notin J^0_{<\lambda}[a],$
 - (B) $i < j \Rightarrow b_i \subseteq b_j \mod J^0_{<\lambda}[a]$ (i.e. $b_i b_j \in J^0_{<\lambda}[a]$),
 - (C) for each i, $\langle f_j \upharpoonright b_i : j < \lambda \rangle$ is cofinal in $(\Pi b_i, <_{f_i : [a]})$,
- (D) for some $g \in \Pi a$, $\bigwedge_{i < \lambda} f_i < g \mod J$ where $J = J^0_{<\lambda}[a] + \{b_i : i < \lambda\}$; in fact
 - (D)⁺ for some $i(*) < \lambda$, $f_{i(*)+i} < g \mod(J^0_{<\lambda}[a] + b_i)$,
 - (E) if $g \le g' \in \Pi a$, then for arbitrarily large $i < \lambda$

$$\bigwedge_{\theta \in a} [g(\theta) \ge f_i(\theta) \Leftrightarrow g'(\theta) \ge f_i(\theta)].$$

PROOF OF 5.7. Assume the lemma fails. We now define by induction on $\alpha < |a|^+$, g_{α} , $i(\alpha)$, $\langle b_i^{\alpha} : i < \lambda \rangle$ such that:

- (i) $g_{\alpha} \in \Pi a$,
- (ii) for $\beta < \alpha, g_{\beta} \leq g_{\alpha}$,
- (iii) $b_i^{\alpha} \stackrel{\text{def}}{=} \{ \theta \in a : f_i(\theta) > g_{\alpha}(\theta) \},$
- (iv) if $i(\alpha) \le i < \lambda$ then $b_i^{\alpha} \ne b_i^{\alpha+1}$.

For $\alpha = 0$ let $g_{\alpha} = f_0$.

For α limit let $g_{\alpha}(\theta) = \bigcup_{\beta < \alpha} g_{\beta}(\theta)$ (now $[\beta < \alpha \rightarrow g_{\beta} \leq g_{\alpha}]$ trivially and $g_{\alpha} \in \Pi a$ as Min $a \geq |a|^{+} > \alpha$).

For $\alpha = \beta + 1$, if $\{i < \lambda : b_i^{\beta} \in J_{<\lambda}^0[a]\}$ is unbounded in λ , then g_{β} is a bound for $\langle f_i : i < \lambda \rangle \mod J_{<\lambda}^0[a]$. So let $i(\beta)$ be such that $\forall i \in [i(\beta), \lambda), b_i^{\beta} \notin J_{<\lambda}^0[a]$. If $\langle b_i^{\beta} : i(\beta) \leq i < \lambda \rangle$ satisfies the desired conclusion we are done.

Now among the conditions in the conclusion of 5.7, (A) holds by assumption, (B) holds by b_i^β 's definition as $[i < j \Rightarrow f_i < f_j \mod J_{<\lambda}^0[a]]$, (D)⁺ holds with $g = g_\beta$ by the choice of b_i^β . Lastly if (E) fails, say for g', then it can serve as g_α . So only (C) (of 5.7) may fail, w.l.o.g. for $i = i(\beta)$. I.e. $\langle f_j \upharpoonright b_{i(\beta)}^\beta : j < \lambda \rangle$ is not cofinal in $(\Pi b_{i(\beta)}^\beta, <_{J_{<\lambda}^0[a]})$. As this sequence of functions is increasing w.r.t. $<_{J_{<\lambda}^0[a]}$, there is $h_\alpha \in \Pi b_{i(\beta)}^\beta$ such that for no $j < \lambda$, $h_\alpha \le f_j \upharpoonright b_{i(\beta)}^\beta$ n.od $J_{<\lambda}^0[a]$. Let $h'_\alpha = h_\alpha \cup 0_{(a-b_{i(\beta)}^\beta)}$, and $g_\alpha \in \Pi a$ be defined by $g_\alpha(\theta) = \operatorname{Max}\{g_\beta(\theta), h'_\alpha(\beta)\}$. Now define b_i^α by (iii) so (i), (ii), (iii) hold trivially, and we have to check (iv). So we can define g_α , $i(\alpha)$ for $\alpha < |a|^+$, satisfying (i)–(iv). As in the proof of 5.5, this is impossible; so that lemma cannot fail.

- 5.8. LEMMA. Suppose |a| < Min(a).
- (1) For every $b \in J^0_{<\lambda^+}[a] J^0_{<\lambda}[a]$, we have: $(\Pi b, <_{J^0_{<\lambda}[a]})$ has true cofinality λ .
- (2) If $0 < \alpha < \lambda$ and for $\beta < \alpha$, $c_{\beta} \in J^0_{<\lambda^+}[a] J^0_{<\lambda}[a]$, then for some $c \in J^0_{<\lambda^+}[a] J^0_{<\lambda}[a]$:

for each
$$\beta < \alpha$$
, $c_{\beta} \subseteq c \mod J^0_{<\lambda}[a]$.

- (3) If D is an ultrafilter on a, then $cf(\Pi a/D)$ is $Min\{\lambda : D \cap J^0_{<\lambda^+}[a] \neq \emptyset\}$.
- (4) For λ limit, $J^0_{<\lambda}[a] = \bigcup_{\mu<\lambda} J^0_{<\lambda}[a]$.
- (5) $|\operatorname{pcf}(a)| \leq 2^{|a|}$ and $[\lambda \in \operatorname{pcf}(a) \leftrightarrow J^0_{<\lambda}[a] \neq J^0_{<\lambda^+}[a]]$.

Proof. (1) Let

 $J = \{b \subseteq a : b \in J^0_{<\lambda}[a] \text{ or } b \in J^0_{<\lambda^+}[a] - J^0_{<\lambda}[a] \text{ and } (\Pi b, <_{J^0_{<\lambda}[a]}) \text{ has true cofinality } \lambda\}.$

Clearly $J \subseteq J^0_{<\lambda^+}[a]$; it is quite easy to check it is an ideal. Assume $J \neq J^0_{<\lambda^+}[a]$ and we shall get a contradiction. Choose $b \in J^0_{<\lambda^+}[a] - J$; as J is an ideal, there is an ultrafilter D on a such that $D \cap J = \emptyset$ and $b \in D$. Now if $\operatorname{cf}(\Pi a/D) \ge \lambda^+$, then $b \notin J^0_{<\lambda^+}[a]$ (by the definition of $J^0_{<\lambda^+}[a]$); contradiction. On the other hand, if $F \subseteq \Pi a$, $|F| < \lambda$, there is $g \in \Pi a$ such that $(\forall f \in F)(f < g \mod J^0_{<\lambda}[a])$ (by 5.5), so $(\forall f \in F)[f < g \mod D]$ (as $J^0_{<\lambda}[a] \subseteq J$, $D \cap J = \emptyset$), and this says $\operatorname{cf}(\Pi a/D) \ge \lambda$. By the last two sentences we know that $\operatorname{cf}(\Pi a/D)$ is λ . Now by 5.6 for some $c \in D$, $(\Pi c, <_{f^0_{<\lambda}[a]})$ has true cofinality λ . Clearly if $c' \subseteq c$, $c' \notin J^0_{<\lambda}[a]$, then also $(\Pi c', <_{f^0_{<\lambda}[a]})$ has cofinality λ , hence w.l.o.g. $c \subseteq b$; hence $c \in J^0_{<\lambda^+}[a]$, hence by the definition of J, $c \in J$. But this contradicts the choice of D as disjoint from J.

We have to conclude that $J = J^0_{<\lambda^+}[a]$ so we have proved 5.8(1).

(2) For each $\beta < \alpha$ let $\langle f_j^{\beta} : j < \lambda \rangle$ exemplify that $(\Pi a, <_{J_{< a[a] + (a - c_{\beta})}})$ has true cofinality λ ; so $f_j^{\beta} \in \Pi a$ and

$$[j(1) < j(2) < \lambda \Rightarrow f_{j(2)}^{\beta} < f_{j(2)}^{\beta} \mod((J_{<\lambda}^{0}[a]) + (a - c_{\beta}))]$$

and

$$((\forall g \in \Pi a)(\exists j < \lambda)[g < f_j^{\beta} \operatorname{mod}([J_{<\lambda}^0[a]) + (a - c_{\beta}))]]).$$

By 5.5 we can define $f_i^* \in \Pi a$ by induction on $j < \lambda$ such that

- (i) for $i < j, f_i^* < f_i^* \mod J_{<\lambda}^0[a]$,
- (ii) for each $\beta < \alpha, f_j^{\beta} \le f_j^* \mod J^0_{<\lambda}[a]$.

Let $\langle b_i : i < \lambda \rangle$ be as guaranteed by 5.7 (for $\langle f_j^* : j < \lambda \rangle$). Clearly for each $\beta < \alpha$, $\langle f_j^* : j < \lambda \rangle$ is $\langle f_j^* : j < \alpha \rangle$ increasing and cofinal. So for each $\beta < \alpha$ for some $i(\beta) < \lambda$

$$c_{\beta} \subseteq b_{i(\beta)} \operatorname{mod} J^{0}_{<\lambda}[a].$$

[For if there is $\beta < \alpha$ such that $\neg (V_{i < \lambda} c_{\beta} \subseteq b_i \mod J^0_{<\lambda}[a])$, then $c_{\beta} \notin J$, where J comes from 5.7(D). Choose now an ultrafilter D on a such that $c_{\beta} \in D \land D \cap J = \emptyset$. Applying 5.7(D) yields a g such that $\bigwedge_{j < \lambda} f_j^* < g \mod J$, so $\bigwedge_{j < \lambda} f_j^* < g \mod D$. On the other hand, for some $j_0 < \lambda$, $g < f_{j_0}^* \mod J^0_{<\lambda}[a] + (a - c_{\beta})$, so $g < f_{j_0}^* \mod D$ (since $D \cap J^0_{<\lambda}[a] + (a - c_{\beta}) = \emptyset$) — a contradiction.]

Let $i(*) = \sup_{\beta < \alpha} i(\beta)$. Now $i(*) < \lambda$ (as $\lambda = \operatorname{cf} \lambda > |\alpha|$) and $c_{\beta} \subseteq b_{i(*)} \mod J^{0}_{<\lambda}[a]$ for each $\beta < \alpha$ (because $i_{1} < i_{2} \Longrightarrow b_{i_{1}} \subseteq b_{i_{2}} \mod J^{0}_{<\lambda}[a]$) and $b_{i(*)} \in J^{0}_{<\lambda^{+}}[a]$ (by the choice of $\langle b_{i} : i < \lambda \rangle$ in 5.7).

- (3) Let $\lambda \in pcf(a)$ be minimal such that $D \cap J^0_{<\lambda^+}[a] \neq \emptyset$ and choose $b \in D \cap J^0_{<\lambda^+}[a]$. Now $(\Pi a, <_{J^0_{<\lambda}[a]+(a-b)})$ has true cofinality λ by 5.8(1). As $b \in D$, $J^0_{<\lambda}[a] \cap D = \emptyset$; we've finished the proof.
- (4) Clearly $\bigcup_{\mu<\lambda} J^0_{<\lambda}[a] \subseteq J^0_{<\mu}[a]$ by 5.4(2). On the other hand, let us suppose that there is $b \in (J^0_{<\lambda}[a] \bigcup_{\mu<\lambda} J^0_{<\lambda}[a])$. Put $J := \bigcup_{\mu<\lambda} J^0_{<\lambda}[a]$. Since $b \in J^0_{<\lambda}[a]$, for every ultrafilter D on a, if $b \in D$, then $\operatorname{tcf}(\Pi a/D) < \lambda$.

Now J is an ideal and $(\Pi a, <_J)$ is λ -directed; i.e. if $\alpha^* < \lambda$ and $\{f_\alpha : \alpha < \alpha^*\} \subset \Pi a$, then there exists $f \in \Pi a$ such that

$$(\forall \alpha < \alpha^*)(f_\alpha < f \mod J).$$

[Why? λ is a limit, hence there is μ^* such that $\alpha^* < \mu^* < \lambda$. (W.l.o.g. $|\alpha|^+ < \mu^*$.) By 5.5, there is $f \in \Pi a$ such that $(\forall \alpha < \alpha^*)[f_\alpha < f \mod J^0_{<\mu^+}[a]$). Since $J^0_{<\mu^*}[a] \subset J$, it is immediate that $(\forall \alpha < \alpha^*)(f_\alpha < f \mod J)$.]

Choose an ultrafilter D on a such that $b \in D$ and $D \cap J = \emptyset$. Since $(\Pi a, <_J)$ is λ -directed and $D \cap J = \emptyset$, one has $tcf(\Pi a/D) \ge \lambda$; contradiction

- (5) Easy too by 5.8(3).
- 5.9. Conclusion. If $|a| < \min a$, then pcf(a) has a last element.

PROOF. This is the minimal λ such that $a \in J^0_{<\lambda^+}[a]$. [$(\lambda \text{ exists, since } \kappa := |\Pi a| \in {\{\lambda : a \in J^0_{<\lambda^+}[a]\}} \neq \emptyset$].]

5.10. CLAIM. Suppose $\kappa < \text{Min}(a)$, for $i < \kappa$, D_i is a filter on a, E a filter on κ and $D^* = \{b \subseteq a : \{i < \kappa : b \in D_i\} \in E\}$ (a filter on a). Let $\lambda_i = \text{tcf}(\Pi a, <_{D_i})$ be well defined. Let

$$\lambda^* = tcf(\Pi a, <_{D^*}), \qquad \mu = tcf(\Pi \lambda_i, <_E).$$

Then $\lambda^* = \mu$ (in particular, if one is well defined, then so is the other).

PROOF. Let $\langle f_{\alpha}^i : \alpha < \lambda_i \rangle$ be a cofinal sequence in $(\Pi a, <_{D_i})$. Define, for $g \in \Pi_{i < \kappa} \lambda_i$, $F(g) \in \Pi a$ by

$$F(g)(\theta) = \sup\{f_{\beta}^{i}(\theta) : i < \kappa, \beta = g(i)\} < \theta \quad (as \ \kappa < Min \ a).$$

Now for each $f \in \Pi a$, define $G(f) \in \Pi_{i < \kappa} \lambda_i$ by

$$G(f)(i) = \min\{\gamma < \lambda_i : f \leq f_{\gamma}^i \mod D_i\}$$

(it is well defined on $f \in \Pi a$ by the choice of $\langle f_{\gamma}^i : \gamma < \lambda_i \rangle$). Note that for $f^1, f^2 \in \Pi a$:

$$f^{1} \leq f^{2} \mod D^{*} \Rightarrow B(f^{1}, f^{2}) \stackrel{\text{def}}{=} \{\theta \in a : f^{1}(\theta) \leq f^{2}(\theta)\} \in D^{*}$$

$$\Rightarrow A(f_{1}, f_{2}) \stackrel{\text{def}}{=} \{i < \kappa : B(f^{1}, f^{2}) \in D_{i}\} \in E$$

$$\Rightarrow \bigwedge_{i \in A(f_{1}, f_{2})} G(f^{1})(i) \leq G(f^{2})(i) \quad \text{where } A(f_{1}, f_{2}) \in E$$

$$\Rightarrow G(f^{1}) \leq G(f^{2}) \mod E.$$

So G is a homomorphism from $(\Pi a, \leq_{D^*})$ into $(\Pi_{i < \kappa} \lambda_i, \leq_E)$. The range of G is a cover of $(\Pi \lambda_i, \leq_E)$:

if $g \in \Pi_{i \le \kappa} \lambda_i$ then $f_{g(i)}^i \le F(g)$ (see definition of F) hence $g(i) \le [G(F(g))](i)$, hence $g \le G(F(g))$.

This finishes the proof.

5.11. CLAIM. In 5.10, if $|a|^+ < \min a$, we can weaken the hypothesis $\kappa < \min a$ to $\kappa < \min \{\lambda_i : i < \kappa\}$.

PROOF. Similar to the proof of 5.10.

We define $G: \Pi a \to \Pi_{i < \kappa} \lambda_i$ exactly as previously and also the proof of $[f^1 \le f^2 \mod D^* \to G(f^1) \le G(f^2) \mod E]$ does not change.

It is enough to prove that for $g \in \Pi_{i < \kappa} \lambda_i$ for some $f \in \Pi a$, $g \le G(f) \mod E$. By 5.5 $(\Pi a, <_{J_{s,da}^0})$ is κ^+ -directed, hence for some $f \in \Pi a$

$$(*)_1$$
 for $i < \kappa$, $f_{g(i)}^i < f \mod J_{\leq \kappa}^0[a]$.

We assume $\kappa < \lambda_i$ hence $J^0_{\leq \kappa}[a] \subseteq J^0_{<\lambda_i}[a]$, which is disjoint from D_i (use 5.8(3)), so together with $(*)_1$

$$(*)_2$$
 for $i < \kappa, f_{g(i)}^i < f \mod D_i$.

So clearly g < G(f) (more than required).

5.12. CONCLUSION. If $|a| < \min a$, $b \subseteq pcf(a)$, $|b| < \min b$, then $pcf(b) \subseteq pcf(a)$.

§6. Normality of $\lambda \in pcf(a)$ for a

- 6.1. DEFINITION. (1) We say $\lambda \in pcf(a)$ is normal (for a) if, for some $b \subseteq a$, $J_{<\lambda}^0 + [a] = J_{<\lambda}^0 [a] + b$.
 - (2) We say $\lambda \in pcf(a)$ is semi-normal (for a) if there are b_i for $i < \lambda$ such that:
 - (i) $i < j \Rightarrow b_i \subseteq b_j \mod J^0_{<\lambda}[a]$

and

- (ii) $J^0_{<\lambda^+}[a] = J^0_{<\lambda}[a] + \{b_i : i < \lambda\}.$
- 6.2. FACT. Suppose Min a > |a|, $\lambda \in pcf(a)$. Now:
- (1) λ is semi-normal for a iff for some $F = \{f_\alpha : \alpha < \lambda\} \subset \Pi a$ for every ultrafilter D over a, F is unbounded in $(\Pi a, <_D)$ whenever $tcf(\Pi a, <_D) = \lambda$.
- (2) In 6.1(2) we can assume w.l.o.g. that either $b_i = b_0 \mod J^0_{<\lambda}[a]$ (so λ is normal) or $b_i \neq b_i \mod J^0_{<\lambda}[a]$ for $i < j < \lambda$.
- (3) Suppose $F = \langle f_{\alpha} : \alpha < \lambda \rangle$ is as in (1) and is $<_{J^0 < |a|}$ increasing. Then λ is normal iff F has a $<_{J^0 < |a|}$ -least upper bound $g \in \Pi_{\theta \in a}(\theta + 1)$ and then $\{\theta \in a : g(\theta) = \theta\}$ generates $J^0 <_{<\lambda^+}[a]$.

PROOF. Left to the reader. Use 5.7, 5.8(3) for (1), (2). We shall give some sufficient conditions for this normality.

- 6.3. DEFINITION. For given regular λ , $\theta < \mu < \lambda$, $S \subseteq \lambda$, sup $S = \lambda$.
- (1) We call $\bar{A} = \langle A_{\alpha} : \alpha < \lambda \rangle$ a continuity condition for (S, μ, θ) if: $A_{\alpha} \subseteq \alpha$, $|A_{\alpha}| < \mu$ for $\alpha \in S$, $[\delta \in S \Rightarrow \mu > \text{cf } \delta \ge \theta]$ and $[\beta \in A_{\alpha} \Rightarrow A_{\beta} = A_{\alpha} \cap \beta]$, $[\delta \in S \Rightarrow \delta = \sup A_{\delta}]$.
 - (2) We say $\bar{f} = \langle f_{\alpha} : \alpha < \lambda \rangle$ obeys $\bar{A} = \langle A_{\alpha} : \alpha < \lambda \rangle$ if:
 - (a) for $\beta \in A_{\alpha}$, $\wedge_{\theta \in a} f_{\beta}(\theta) < f_{\alpha}(\theta)$,
 - (b) if $\alpha \in S$ then $f_{\alpha}(\theta) = \sup_{\beta \in A_{\alpha}} f_{\beta}(\theta)$ for every $\theta \in a$.
- (3) If $\theta = \aleph_0$ we omit it; (S, a) stands for $(S, \text{Min } a, |a|^+)$, (λ, μ, θ) stands for " (S, μ, θ) for some stationary $S \subseteq \lambda$ "; similarly (λ, a) .
- (4) We add the adjective "weak" if " $\beta \in A_{\alpha} \to A_{\beta} = A_{\alpha} \cap \beta$ " is replaced by " $\alpha \in S \& \beta \in A_{\alpha} \to (\exists \gamma < \alpha)[A_{\alpha} \cap \beta \subseteq A_{\gamma}]$ ".
 - (5) $I^g[\lambda] \stackrel{\text{def}}{=} \{S \subseteq \lambda : \text{ there is a sequence } \langle \mathscr{P}_\alpha : \alpha < \lambda \rangle \text{ such that } \mathscr{P}_\alpha \text{ is a family of } <\lambda \text{ subsets of } \lambda, \text{ and for every } \delta \in S \text{ for some unbounded } A \subseteq \delta, \text{ otp } A < \delta \text{ and } [\alpha \in A \Rightarrow A \cap \alpha \in \bigcup_{\beta < \delta} \mathscr{P}_\beta] \}.$
 - (6) $I_{\mu,\theta}^{\text{wg}}[\lambda] = \{S \subseteq \lambda : \text{there is a sequence } \langle \mathscr{P}_{\alpha} : \alpha < \lambda \rangle \text{ such that } \mathscr{P}_{\alpha} \text{ is a family of } < \lambda \text{ subsets of } \lambda \text{ each of power } < \mu \text{ and for every } \delta \in S \text{ for some unbounded } A \subseteq \delta, \ (\forall \alpha \in A)$ $(\exists x \in \bigcup_{\beta < \delta} \mathscr{P}_{\beta})[A \cap \alpha \subseteq x]\}.$
- (7) Stationary members of $I^g[\lambda]$ are called good stationary sets; similarly, stationary members of $I^{wg}_{\mu,\theta}[\lambda]$ are called weakly good stationary sets. Again $I^{wg}_{\mu}[\lambda]$ is $I^{wg}_{\mu,\aleph_0}[\lambda]$.

For definitions and proofs see [Sh 88], AP Lemma 2, [Sh 300a], Ch. III, §6, [Sh 351] 4.1.

- 6.4. FACT. (1) There is a [weak] continuity condition \bar{A} for (λ, a) iff there is stationary S such that $S \subseteq \{\delta < \lambda : |a| < cf \delta < Min a\}$ is in $I^g[\lambda]$ [in $I^{wg}_{Min a}[\lambda]$].
 - (2) If $\lambda = \mu^+$, cf $\mu = \mu > \aleph_0$, then $\{\delta < \lambda : \text{cf}(\delta) < \mu\}$ is in $I^g[\lambda]$.
- (3) If $\lambda = \mu^+$, $\theta < \text{cf } \mu$, then $\{\delta < \lambda : \text{cf } \delta = \theta\}$ contains a stationary set from $I_{\kappa, \theta}^{\text{wg}}[\lambda]$ for some $\kappa < \mu$.
- (4) If $\lambda = \mu^+$, $\mu \to (\theta)_{\text{cf}\mu}^2$, then there are $\kappa < \mu$ and a stationary $S \subseteq \{\delta < \lambda : \text{cf } \delta = \theta\}$ which is in $I_{\kappa \theta}^{\text{wg}}[\lambda]$.
- 6.5. FACT. Suppose \bar{A} is a weak continuity condition for $(S, a), f_{\alpha} \in \Pi a$ for $\alpha < \lambda$, Min $a > |a|^+$, $\lambda = \operatorname{cf} \lambda > |a|$. Then:
 - (1) We can find $\langle f'_{\alpha} : \alpha < \lambda \rangle$ obeying $\bar{A}, f'_{\alpha} \in \Pi a$, such that
 - (i) for $\alpha \in \lambda S$, $f_{\alpha} \leq f'_{\alpha}$,
 - (ii) for every $\alpha, f_{\alpha} \leq f'_{\alpha+1}$.
- (2) Suppose $\langle f'_{\alpha} : \alpha < \lambda \rangle$ obeys \bar{A} and satisfies (i). If $g_{\alpha} \in \Pi a$, $\langle g_{\alpha} : \alpha < \lambda \rangle$ obeys \bar{A} and $\Lambda_{\alpha} g_{\alpha} \leq f_{\alpha}$, then $\Lambda_{\alpha} g_{\alpha} \leq f'_{\alpha}$.
 - (3) We can add in (1)
 - (iii) if $\langle f''_{\alpha} : \alpha < \lambda \rangle$ obeys $\bar{A}, f''_{\alpha} \in \Pi a$, and it satisfies (i), then for every α , $f'_{\alpha} \leq f''_{\alpha}$.

Proof. Easy.

- 6.6. LEMMA. Suppose $f_{\alpha} \in \Pi a$ for $\alpha < \lambda$, λ regular, $\bar{f} = \langle f_{\alpha} : \alpha < \lambda \rangle$ obeys some $\bar{A} = \langle A_{\alpha} : \alpha < \lambda \rangle$ which is a weak continuity condition for (λ, a) , and \bar{f} is $J_{<\lambda}^0[a]$ -increasing (so $\lambda \ge \min(a)$).
 - (a) $\langle f_{\alpha} : \alpha < \lambda \rangle$ has a $<_{J^0 < \lambda [a]}$ -least upper bound $g \in \Pi_{\theta \in a}(\theta + 1)$.
 - (b) $b_g \in J^0_{<\lambda^+}[a] J^0_{<\lambda}[a]$ where $b_g \stackrel{\text{def}}{=} \{\theta \in a : g(\theta) = \theta\}$.
 - (c) Letting $\mu_{\theta} = \text{cf}(g(\theta))$, we have that $(\Pi \mu_{\theta}, <_{J_{<\lambda[a]}})$ has true cofinality λ and $\mu_{\theta} \leq \theta$.

PROOF. See [Sh 282], Lemma 14 for (a).

- 6.7. CLAIM. Suppose:
- (a) $f_{\alpha} \in \Pi a$ for $\alpha < \lambda$, $\lambda \in pcf(a)$ and $\bar{f} = \langle f_{\alpha} : \alpha < \lambda \rangle$ is $<_{J_{\alpha} = 1}^{0} \bar{f}$ increasing.
- (b) \bar{f} satisfies \bar{A} , a weak continuity condition for (S, a), $\lambda = \sup S$ (hence $\lambda \ge \min(a) > |a|^+$).
- (c) J is an ideal of $\mathcal{P}(a)$ extending $J_{<\lambda}^0[a]$, and $\langle f_{\alpha}/J : \alpha < \lambda \rangle$ is cofinal in $(\Pi a, <_J)$ (e.g. $J = J_{<\lambda}^0[a] + (a b)$, $b \in J_{<\lambda}^0[a] J_{<\lambda}^0[a]$).
- (d) $\langle f'_{\alpha} : \alpha < \lambda \rangle$ satisfies (a), (b) above.
- (e) $f_{\alpha} \leq f'_{\alpha}$ for $\alpha < \lambda$, alternatively: $\langle f'_{\alpha} : \alpha < \lambda \rangle$ satisfies (c).

Then $\{\delta < \lambda : \text{if } \delta \in S \text{ then } f_{\delta}' = f_{\delta} \mod J \}$ contains a club of λ .

Proof. Not hard.

6.8. LEMMA. Suppose Min $a > |a|^+$, $\lambda = \operatorname{cf} \lambda \in \operatorname{pcf}(a)$ and there is a good stationary set $\subseteq \{\delta < \lambda : |a| < \operatorname{cf} \delta < \operatorname{Min} a\}$ or at least a weakly good stationary set $\subseteq \{\delta < \lambda : |a| < \operatorname{cf} \delta < \operatorname{Min} a\}$. Then λ is normal for a.

PROOF. Let \tilde{A} be a weak continuity condition for (S, a) for some S, where S is a stationary subset of $\{\delta < \lambda : |a| < \text{cf } \delta < \text{Min } a\}$. We assume λ is not normal for a and eventually get a contradiction. By 6.2, 6.6 λ is not seminormal for a. Let us define by induction on $\zeta \leq |a|^+$, $\tilde{f}^{\zeta} = \langle f_{\alpha}^{\zeta} : \alpha < \lambda \rangle$ and D_{ζ} , such that:

- (I) (i) $f_{\alpha}^{\zeta} \in \Pi a$,
 - (ii) $\alpha < \beta \Rightarrow f_{\alpha}^{\zeta} < f_{\beta}^{\zeta} \mod J_{<\lambda}^{0}[a],$
 - (iii) \bar{f}^{ζ} obeys \bar{A} ,
 - (iv) for $\xi < \zeta \le |a|^+$ and $\alpha < \lambda : f_\alpha^{\xi} \le f_\alpha^{\zeta}$;
- (II) (i) D_{ζ} is an ultrafilter on a such that $cf(\Pi a/D_{\zeta}) = \lambda$,
 - (ii) $\langle f_{\alpha}^{\zeta}/D_{\zeta}: \alpha < \lambda \rangle$ is not cofinal in $\Pi a/D_{\zeta}$,
 - (iii) $\langle f_{\alpha}^{\zeta+1}/D_{\zeta} : \alpha < \lambda \rangle$ is cofinal in $\Pi a/D_{\zeta}$,
 - (iv) $f_0^{\zeta+1}/D_{\zeta}$ is above $\{f_{\alpha}^{\zeta}/D_{\zeta}: \alpha < \lambda\}$.

For $\zeta = 0$: No problem. [Use 6.5 and 6.2.]

For ζ limit: Let $g_{\alpha}^{\zeta} \in \Pi a$ be defined by $g_{\alpha}^{\zeta}(\theta) = \sup_{\xi < \zeta} f_{\alpha}^{\xi}(\theta)$, which belongs to Πa as $|a|^+ < \min(a)$. Now use 6.5 and get $\langle f_{\alpha}^{\zeta} : \alpha < \lambda \rangle$ obeying \bar{A} , $[\zeta \in \lambda - S \Rightarrow g_{\alpha}^{\zeta} \leq f_{\alpha}^{\zeta}]$, $[g_{\alpha}^{\zeta} \leq f_{\alpha+1}^{\zeta}]$. Use 6.5 to find an appropriate D_{ζ} . Now $\langle f_{\alpha}^{\zeta} : \alpha < \lambda \rangle$ and D_{ζ} are as required.

For $\zeta = \xi + 1$: By 6.2(1) there is an ultrafiler D_{ξ} on a such that $\operatorname{tcf}(\Pi a, <_{D_{\xi}}) = \lambda$ and $\{f_{\alpha}^{\xi} : \alpha < \lambda\}$ is bounded in $(\Pi a, <_{D_{\xi}})$. Let $\langle h_{\alpha}^{\xi} : \alpha < \lambda \rangle$ be cofinal in $(\Pi a, <_{D_{\xi}})$ and w.l.o.g. $f_{\alpha}^{\xi} \leq h_{0}^{\xi} \mod D_{\zeta}$. We get D_{ζ} and $\langle f_{\alpha}^{\zeta} : \alpha < \lambda \rangle$ by 6.2 and 6.5 for $\langle h_{\alpha}^{\xi} : \alpha < \lambda \rangle$.

Now for each $\zeta < |a|^+$ we apply 6.7 for $\langle f_{\alpha}^{\zeta+1} : a < \lambda \rangle$, $\langle f_{\alpha}^{|a|^+} : \alpha < \lambda \rangle$, $J = P(a) \setminus D_{\zeta}$. We get a club C_{ζ} of λ such that:

$$(*) \ \alpha \in S \cap C_{\zeta} \Rightarrow f_{\alpha}^{\zeta+1} = f_{\alpha}^{|\alpha|^{+}} \bmod D_{\zeta}.$$

So $\bigcap_{\zeta<|a|^+} C_\zeta$ is a club of λ since $|a|^+ < \lambda$, so we can choose $\alpha \in S \cap \bigcap_{\zeta<|a|^+} C_\zeta$. Let $c_\zeta = \{\theta \in a : f_\alpha^\zeta(\theta) = f_\alpha^{|a|^+}(\theta)\}$. By (*), $c_{\zeta+1} \in D_\zeta$; by (II)(ii), (iv) $c_\zeta \notin D_\zeta$, hence $c_\zeta \neq c_{\zeta+1}$. On the other hand, by (I) (iv), $\langle c_\zeta : \zeta < |a|^+ \rangle$ is \subseteq -increasing and by the previous sentence it is strictly \subseteq -increasing; contradition.

6.9. CLAIM. Suppose $Min(a) > |a|^+$, $\mu = cf \mu < \lambda \in pcf(a)$. Then for

some $\kappa_{\theta} = \operatorname{cf} \kappa_{\theta} < \theta$ (for $\theta \in a$) we have $(\Pi_{\theta \in a} \kappa_{\theta}, <_{J^0 < A[a]})$ has true cofinality μ , provided that

(*) μ has a weakly good stationary set $S \subseteq \{\delta < \mu : |a| < cf \delta < Min a\}$.

PROOF. Easy, by 6.6, 6.5.

- 6.10. CLAIM. Suppose the assumptions (a), (c), (d), (e) of 6.7 hold and
- (b)' \bar{f} obeys \bar{A} , \bar{A} a continuity condition for $(S, \kappa, \aleph_0)(\lambda = \sup S)$.
- (f) J is κ -complete, $\kappa = \operatorname{cf} \kappa > \operatorname{cf}(\delta)$ for every $\delta \in S$.

Then for some club C of λ

$$\delta \in S \cap C \Rightarrow f'_{\alpha} = f_{\alpha} \mod J.$$

Proof. Not hard. (See 6.7.)

- 6.11. LEMMA. Suppose $Min(a) > |a|^+$, $\lambda \in pcf(a)$. Then there is $b \subseteq a$ such that $b \in J^0_{<1}$ [a] and
- (*) for every $c \in J^0_{<\lambda^+}[a]$ there are $b_n \in J^0_{<\lambda}[a]$ for $n < \omega$ such that $c \subseteq b \cup \bigcup_{n < \omega} b_n$.

PROOF. Let $S = \{\delta < \lambda : \text{cf } \delta = \aleph_0 \text{ or } \delta \text{ is a successor ordinal} \}$. We can easily find a continuity condition $\bar{A} = \langle A_\alpha : \alpha < \lambda \rangle$, for (S, \aleph_1, \aleph_0) such that, for limit $\delta \in S$, A_δ is an unbounded subset of δ of order type ω , and for non-limit $\alpha \in S$, A_α is finite. Here is how one finds the continuity condition.

We prove by induction on $\alpha \leq \lambda$ the existence of a continuity condition $\bar{A}^{\alpha} = \langle A_i^{\alpha} : i \in \alpha \cap S \rangle$:

- (1) $\alpha \leq \omega + 1$: let $A_i = i$ for $i < \alpha$.
- (2) Not (1) and $\alpha = \beta + \gamma$ where $\beta < \alpha, \gamma < \alpha, \text{cf}(\beta) \neq \aleph_0$ Let

$$A_i^{\alpha} = \begin{cases} A_i^{\beta}, & i \in \beta \cap S \\ \beta + A_i^{\gamma}, & i \in \alpha \cap S \setminus \beta, \quad i - \beta = j \end{cases}$$

where $\beta + A = \{\beta + \zeta : \zeta \in A\}.$

(3) Not (1), (2) and $\alpha = \beta$, $\operatorname{cf}(\beta) = \aleph_0$ or $\alpha = \beta + 1$, $\operatorname{cf} \beta = \aleph_0$. Let $\beta = \bigcup_{n < \omega} \alpha_n$, where $0 = \alpha_0 < \alpha_1 < \alpha_2 < \cdots$, $\operatorname{cf}(\alpha_{n+1}) \neq \aleph_0$ (e.g. α_{n+1} successor),

$$A^{\alpha}_{\beta} = \{\alpha_n : n < \omega\} [\mathrm{cf}(\beta) < \alpha],$$

$$A_{\alpha_n}^{\alpha} = \{\alpha_m : m < n\},\,$$

if $\alpha_n < \gamma < \alpha_{n+1}$ let $A_{\gamma}^{\alpha} := \alpha_{n+1} + A_{\gamma-(\alpha_n+1)}^{\alpha_{n+1}-(\alpha_n+1)}$.

(4) Not (1), (2), (3), $\alpha > cf(\alpha) > \aleph_0$

Let $\kappa = \mathrm{cf}(\alpha)$. Let $\langle \alpha_i : i < \kappa \rangle$ be inceasing continuous, $\bigcup_{i < \kappa} \alpha_i = : \alpha, \alpha_0 = 0$, $\mathrm{cf}(\alpha_{i+1}) \neq \aleph_0$.

We define for each $\langle A_{\gamma}^{\alpha} : \alpha_{i} < \gamma < \alpha_{i+1} \rangle$ by the induction hypothesis

$$A_{\gamma}^{\alpha} = (\alpha_i + 1) + A_{\gamma - (\alpha_i + 1)}^{\alpha_{i+1} - (\alpha_i + 1)} \quad \text{for } \alpha_i < \gamma < \alpha_{i+1},$$

$$A_{\alpha_i}^{\alpha} = \{\alpha_i : j \in A_i^{\kappa}\}.$$

(5)
$$\alpha = \operatorname{cf} \alpha > \aleph_0$$

Call $\alpha = \kappa$. Choose $\langle \alpha_i : i < \kappa \rangle$ increasing continuous, $\bigcup_{i < \kappa} \alpha_i = \alpha$, $\alpha_0 = 0$, cf $(\alpha_{i+1}) > \aleph_0^{\dagger}$ and $\alpha_{i+1} > (\omega + \omega) + (\alpha_i + \alpha_i) + \omega$. So $E_i = \{\delta + 1 : \delta \text{ limit, } \alpha_i < \delta + 1 < \alpha_{i+1} \}$ has power $\geq |\alpha_i|$.

Let g_i be a function from E_i onto $\bigcup_{i < i} E_i$.

We define $h: \kappa \to \kappa$,

$$h(\alpha) = \begin{cases} \alpha + 1, & \alpha \text{ successor,} \\ \alpha, & \text{otherwise.} \end{cases}$$

Choose A^{α} as follows: for $\alpha_i < \gamma < \alpha_{i+1}$, let $B^{\alpha}_{\gamma} = (\alpha_i + 1) + A^{\alpha_{i+1} - (\alpha_i + 1)}_{\gamma - (\alpha_i + 1)}, A^{\alpha}_{h(\gamma)} = h(B^{\alpha}_{\gamma})$. So we have defined A^{α}_{β} for $\beta \in \bigcup_i ((\alpha_i, \alpha_{i+1}) \setminus E_i)$.

For $\gamma \in E_i$ we define A^{α}_{β} by induction on γ :

$$i = 0,$$
 $A_{\gamma}^{\alpha} = 0;$ $i > 0,$ $A_{\gamma}^{\alpha} = \{h_i(\gamma)\} \cup A_{h_i(\gamma)}^{\alpha}.$

Lastly for $\gamma \in \{\alpha_i : i < \kappa\}$, if $cf(\alpha_i) = \aleph_0$, then $cf(i) = \aleph_0$ So there are $\langle j_n : n < \omega \rangle$:

$$0 = j_0 < j_1 < \cdots$$

and

$$\bigcup j_n = i$$
.

Choose inductively $\gamma_n^i \in E_i$, $h(\gamma_{n+1}^i) = \gamma_n^i$. So

$$A_{\gamma_n^i}^{\alpha} = \{ \gamma_0^i, \dots, \gamma_{n-1}^i \}$$
 and $A_{\alpha_i}^{\alpha} \stackrel{\text{def}}{=} \{ \gamma_n^i : n < \omega \}.$

Now after this digression, we return to the proof of 6.11. The proof is the same as that of 6.8, using 6.10 instead of 6.7, applied to $J \stackrel{\text{def}}{=} J^1_{<\lambda}[a] =$

[†] We assume $\kappa > \aleph_1$; if $\kappa = \aleph_1$, the changes are small.

 $\{\bigcup_n b_n : b_n \in J^0_{<\lambda}[a] \text{ for } n < \omega\}$ — which is an \aleph_1 -complete ideal (we use J instead of $J^0_{<\lambda}[a]$).

- 6.12. Conclusion. Suppose Min $a > |a|^+$.
- (1) We can find $\langle b_{\lambda} : \lambda \in pcf(a) \rangle$ such that:
 - (i) $b_{\lambda} \in J_{\leq \lambda^{+}}^{0}[a] J_{\leq \lambda}^{0}[a]$,
 - (ii) every member of $J^0_{<\lambda}[a]$ is included in some $\bigcup_{n<\omega} b_{\lambda_n}$, for some $\lambda_n < \lambda$.
- (2) If every $\lambda \in pcf(a)$ is normal for a, then we can replace (ii) above by (ii) $J^0_{<\lambda}[a]$ is a generated by $\{b_\mu : \mu \in \lambda \cap pcf(a)\}$.
- 6.13. FACT. (1) Suppose $|\operatorname{pcf}(a)|^{\aleph_0} < \operatorname{Min} a$ (or $(*)_2$ of 9.1). If $\lambda \in \operatorname{pcf}(a)$, and
 - $(*)_{\kappa}$ [if $\mu_i \in pcf(a) \cap \lambda$ for $i < \alpha < \kappa$ then $\Pi_{i < \alpha} \mu_i < \lambda$],

then $J_{<\lambda}^0[a]$ is a κ -complete ideal.

- (2) If in (1) $\kappa \ge \aleph_1$, then λ is normal for a.
- 6.13A. REMARK. To prove 6.13, we rely here on a later Theorem (9.1), so till 9.1 we cannot use 6.13.
- PROOF. (1) Suppose $J^0_{<\lambda}[a]$ is not κ -complete, then there are $\alpha < \kappa$ and $b_i \in J^0_{<\lambda}[a]$ for $i < \alpha$ and $\bigcup_{i < \alpha} b_i \notin J^0_{<\lambda}[a]$. W.l.o.g. α is minimal, hence $\alpha = \mathrm{cf}(\alpha)$ and w.l.o.g. $[i < j < \alpha \Rightarrow b_i \subseteq b_j]$. By 9.1(1) for some $c \subseteq \bigcup_{i < \alpha} \mathrm{pcf}(b_i)$, $|c| \subseteq |\alpha|$ and $\lambda \in \mathrm{pcf}(c)$. Now $b_i \in J^0_{<\lambda}[a]$ hence max $\mathrm{pcf}(b_i) < \lambda$, hence c is a set of $< \kappa$ regular cardinals, each $< \lambda$ and from $\bigcup_{i < \alpha} \mathrm{pcf}(b_i) \subseteq \mathrm{pcf}(a)$. By $(*)_{\kappa}$ we get a contradiction.
 - (2) By 6.11 and the first part.
- 6.14. LEMMA. Suppose $|\operatorname{pcf}(a)|^{\aleph_0} < \operatorname{Min} a$. Then every $\lambda \in \operatorname{pcf}(a)$ is normal for a.

PROOF. W.l.o.g. a = pcf(a). [Just prove that if $a \subseteq b$, |b| < min(b) and λ is normal for b, then λ is normal for a.]

We prove by induction on λ , and for a fixed λ by induction on θ , that

(*) if $|\operatorname{pcf}(a)|^{\aleph_0} < \operatorname{Min} a, \lambda \in \operatorname{pcf}(a), \theta = \sup\{\mu^+ : \mu \in \operatorname{pcf}(a), \mu < \lambda\}, then \lambda$ is normal for a.

Case I: $\theta = \mu^+$.

Necessarily $\mu \in pcf(a)$. By the induction hypothesis for some $b_{\mu} \subseteq a$, $J^0_{<\mu^+}[a] = J^0_{<\mu}[a] + b_{\mu}$.

Now $\lambda \notin pcf(b_{\mu})$ so $\lambda \in pcf(a - b_{\mu})$, and by the choice of b_{μ} and 5.8(3), $\mu \notin pcf(a - b_{\mu})$, so $\theta^* \stackrel{\text{def}}{=} sup(\lambda \cap pcf(a - b_{\mu})) \leq \mu$. So we can apply the induction hypothesis on λ , θ^* , $a - b_{\mu}$ and get that λ is normal for $a - b_{\mu}$. As $\lambda \notin pcf(b_{\mu})$, by 5.3(2), λ is normal for a as required.

Case II: θ is a limit cardinal.

Remember a = pcf(a).

Let $c = \theta \cap \operatorname{pcf}(a)$, $J_c^{\operatorname{bd}} = \{c' \subseteq c \; ; \; c' \text{ is bounded in } c\}$. Now if D is an ultrafilter on c disjoint from J_c^{bd} , then $\operatorname{tcf}(\Pi c, <_D)$ is necessarily $\geq \theta$ (by 5.3(4)), but it belongs to $\operatorname{pcf}(c)$ which, by 5.11, is a subset of $\operatorname{pcf}(a)$, hence by assumption it is $\geq \lambda$. We conclude $D \cap J_{<\lambda}^0[a] = \emptyset$. As this holds for every such D we know $J_{<\lambda}^0[a] \upharpoonright c \subseteq J_c^{\operatorname{bd}}$, so easily $J_{<\lambda}^0[a] \subseteq J_c^{\operatorname{bd}}$.

Case IIa: $cf(\theta) > \aleph_0$.

 J_c^{bd} is \aleph_1 -complete, so by the argument of 6.11 there is $b^* \subseteq c$ such that:

- (i) $b^* \in J^0_{<\lambda^+}[a]$,
- (ii) $(\forall b' \in J_{<\lambda^+}^0[a])(b'-b \in J_c^{bd}).$

We claim

(*) for some $\sigma \in c$, $\lambda \notin pcf(c - \sigma - b^*)$.

[If not, for every $\sigma \in c$ there is $b_{\sigma} \in J^0_{<\lambda^+}[a] - J^0_{<\lambda}[a]$, $b_{\sigma} \subseteq c$, $b_{\sigma} \cap b^* = \emptyset$ and Min $b_{\sigma} \ge \sigma$. By 5.8(2) there is $b' \subseteq c$, $b' \in J^0_{<\lambda^+}[a]$ such that $\sigma \in c \Rightarrow b_{\sigma} \subseteq b' \mod J^0_{<\lambda}[a]$. As $b_{\sigma} \subseteq c - b^*$, Min $b_{\sigma} \ge \sigma$ we have $b' - b^* \subseteq c$ unbounded in c, and contradicting (ii) above.]

Now λ is normal for b^* (as $b^* \in J^0_{<\lambda^+}[a]$). Also $\lambda \notin pcf(c - \sigma - b^*)$ (by (*)) hence λ is normal for $c - \sigma - b^*$; moreover, by the induction hypothesis applied to λ , $c \cap \sigma \lambda$ is normal for $c \cap \sigma$. Together (see 5.8(3)) λ is normal for c. Also, as $Min(a - \lambda) = \lambda$, λ is normal for $a - \lambda$ so it is normal for a.

Case IIb: cf $\theta = \aleph_0$.

Using $|\operatorname{pcf} a|^{\aleph_0} = |a|^{\aleph_0} < \operatorname{Min} a < \lambda$. Apply 5.8(2) to $\{b \subseteq c : |b| = \aleph_0, b \in J^0_{<\lambda^+}[a] - J^0_{<\lambda}[a]\}$ and proceed as in Case IIa.

§7. Getting better representations: generating sequences and cofinality systems

We can replace systematically normal by semi-normal and b_{λ} by $\langle b_{i}^{\lambda} : i < \lambda \rangle$ as in Definition 6.1, by avoiding it to ease the reading.

7.1. DEFINITION. (1) We say $\langle b_i : \lambda \in c \rangle$ is a generating sequence for a if:

- (i) $b_{\lambda} \subseteq a$, $c \subseteq pcf a$,
- (ii) $J^0_{<\lambda^+}[a] = (J^0_{<\lambda}[a]) + b_{\lambda}$.
- (2) Let $J_{<\lambda}^{1,\kappa}[a]$ be the κ -complete ideal on $\mathscr{P}(a)$ generated by $J_{<\lambda}^{0}[a]$.
- (3) Let $pcf^{1,\kappa}(a) = \{\lambda \in pcf(a) : J^{1,\kappa}_{<\lambda}[a] \neq J^{1,\kappa}_{<\lambda^+}[a]\}$ (See 7.1(6).)
- (4) We say $\langle b_{\lambda}^a : \lambda \in c \rangle$ is a weak generating sequence for a if
 - (i) $b_{\lambda}^a \subseteq a$, $b_{\lambda}^a \notin J_{<\lambda}^0[a]$, $b_{\lambda}^a \in J_{<\lambda}^0[a]$,
 - (ii) $c \subseteq pcf(a)$.
- (5) We say $\langle b_{\lambda}^{a} : \lambda \in c \rangle$ is a κ -almost generating sequence for a if (i), (ii) of (4) hold and
 - (iii) $J_{<\lambda}^{1,\kappa}$ [a] = $(J_{<\lambda}^{1,\kappa}[a]) + b_{\lambda}^{a}$.
- (6) In (2), (3), (5) if $\kappa = \aleph_1$, we omit it.
- (7) We call $\bar{b} = \langle b_{\lambda} : \lambda \in c \rangle$ smooth if $\theta \in b_{\lambda} \Rightarrow b_{\theta} \subseteq b_{\lambda}$.
- 7.2. FACT. Let $|a|^{+} < \text{Min } a$.
- (1) $\lambda \in pcf^1(a)$ iff for some \aleph_1 -complete ideal J on a, $\lambda = tcf(\Pi a, <_J)$.
- (2) There is an almost generating sequence $\langle b_{\lambda} : \lambda \in pcf^{1}(a) \rangle$ for a.
- (3) There is a generating sequence $\langle b_{\lambda} : \lambda \in pcf(a) \rangle$ for a if at least one of the following holds:
 - (i) $2^{|a|} < \min a$,
 - (ii) $|\operatorname{pcf}(a)|^{\aleph_0} < \operatorname{Min} a$,
 - (iii) every $\lambda \in pcf(a)$ has a (λ, a) -weakly good stationary set (see Definition 6.3)
- (4) An \aleph_0 -almost generating sequence is a generating sequence.
- (5) Suppose $b = \langle b_{\lambda} : \lambda \in pcf(a) \rangle$ is a generating sequence, and $b \subseteq a$, b = pcf(b), then for some finite $d \subseteq b$, $b \subseteq \bigcup_{\theta \in d} b_{\theta}$.

PROOF. (1) If $\lambda \in \text{pcf}^{1}(a)$, i.e. $\lambda \in \text{pcf}^{1,\aleph_{1}}(a)$ (see 7.1(6)), this means $J^{1}_{<\lambda}[a] \neq J^{1}_{<\lambda^{+}}[a]$, i.e. $J^{1,\aleph_{1}}_{<\lambda}[a] \neq J^{1,\aleph_{1}}_{<\lambda^{+}}[a]$. So choose $b \in J^{1}_{<\lambda^{+}}[a]$, $b \notin J^{1}_{<\lambda}[a]$, and let $J = J^{1}_{<\lambda}[a] + (a - b)$.

The other direction is trivial too. (Use 5.8(3) and note that $J^1_{<\lambda}[a] \neq J^1_{<\lambda^+}[a]$ iff $J^1_{<\lambda}[a] \not\supseteq J^0_{<\lambda^+}[a]$.)

- (2) By 6.11.
- (3) We can assume a is infinite.
 - If (i), then as $|pcf(a)| \le 2^{|a|}$ (by 5.8(5)) then $|pcf(a)|^{\aleph_0} \le (2^{|a|})^{\aleph_0} = 2^{|a|} < \text{Min } a$, so (ii) holds.
 - If (ii) holds, use 6.14.
 - If (iii) holds, use 6.8.
- (4) Check.
- (5) If not, then $I = \{b \cap \bigcup_{\theta \in d} b_{\theta} : d \subseteq b, d \text{ finite}\}\$ is a family of subsets of b,

closed under union, $b \notin I$, hence there is an ultrafilter D on b disjoint from I. Let $\theta \stackrel{\text{def}}{=} \operatorname{cf}(\Pi b/D)$; as $b = \operatorname{pcf}(b)$ necessarily $\theta \in b$. Let D' be the ultrafilter on a which D generates, clearly $\theta = \operatorname{cf}(\Pi a/D')$; by 5.8(3), $b_{\theta} \in D'$, hence $b \cap b_{\theta} \in D$, contradicting the choice of D.

- 7.3. Definition. (1) For a weak generating sequence $\bar{b} = \langle b_{\lambda} : \lambda \in c \rangle$ for a we say $\bar{f} = \langle \langle f_{\lambda,\alpha} : \alpha < \lambda \rangle : \lambda \in c \rangle$ is a cofinal sequence for (a, \bar{b}) if
 - (i) $\langle f_{\lambda,\alpha} : \alpha < \lambda \rangle$ is strictly increasing and cofinal in $(\Pi(a \cap \lambda^+), <_{J_{\alpha,|\alpha|+(a-b)}^0})$.
 - (2) \bar{f} is continuous if [* continuous]
 - (ii) if $\delta < \lambda$, $|a| < \text{cf } \delta < \text{Min } a$ then

$$f_{\lambda,\delta} = f_{\lambda,\delta}^0 \quad \left[f_{\lambda,\delta}(\theta) = \bigcup_n f_{\lambda,\delta}^n(\theta) \right]$$

where $f_{\lambda,\delta}^n(\theta)$ is defined by induction on $n < \omega$,

$$f_{\lambda,\delta}^0(\theta) = \operatorname{Min}\left\{\bigcup_{\alpha \in C} f_{\lambda,\alpha}(\theta) : C \subseteq \delta \text{ is a club}\right\},$$

$$\rho_{\lambda,\delta}^{n+1}(\theta) = \sup\{f_{\mu,\alpha}(\theta) : \theta \leq \mu < \lambda, \mu \in a, \alpha = f_{\lambda,\delta}^n(\mu)\} \cup \{f_{\lambda,\delta}^n(\theta)\}.$$

- (3) \bar{f} is nice if it is * continuous and in addition:
 - (iii) if $\delta < \lambda$, then

$$\theta \in a \& \sigma \in a \cap \theta^+ \Rightarrow f_{\theta, f, \iota(\theta)}(\sigma) \leq f_{\lambda, \delta}(\sigma),$$

except possibly when $|a| < \text{cf } \delta < \text{Min } a, \text{ cf}[f_{\lambda,\delta}(\sigma)] \neq \text{cf } \alpha$.

- 7.4. FACT. Assume $|a| < \min a$.
- (1) For every weak generating sequence \bar{b} for a, some \bar{f} is a * continuous cofinal sequence for (a, \bar{b}) .
- (2) If $\langle \langle f_{\lambda,\alpha} : \alpha < \lambda \rangle : \lambda \in pcf(a) \rangle$ is a cofinal sequence for (a, \bar{b}) , \bar{b} is a generating sequence for a with domain pcf(a), then
 - (*)₂ for every $g \in \Pi a$ there are $n < \omega$, $\lambda_0 > \lambda_1 > \cdots > \lambda_n$ from pcf(a) and $\alpha_l < \lambda_1$ for $l \le n$ such that

$$g \leq \operatorname{Max} \{ f_{\lambda_{l},\alpha_{l}} : l \leq n \}.$$

(3) In (1), if \bar{b} is only a κ -almost generating sequence for a (so its domain $\supseteq pcf^{1,\kappa}(a)$), then

(*)₃ for every $g \in \Pi a$ there is a set $b \subseteq \operatorname{pcf} a$ of power $< \kappa$ and $\langle \alpha_{\theta} : \theta \in b \rangle$ such that $\alpha_{\theta} < \theta$ and

$$g < \sup\{f_{\lambda,\alpha_1} : \lambda \in b\};$$

in fact $\forall \theta \in a \ \bigvee_{\lambda \in b} g(\theta) < f_{\lambda,\alpha}(\theta)$.

PROOF. (1) We define $\langle f_{\lambda,\alpha} : a < \lambda \rangle$ for each $\lambda \in c$. By 5.5 there is $\langle f_{\lambda,\alpha}^* : \alpha < \lambda \rangle$, $<_{\Gamma}$ -increasing, where $J = (J_{<\lambda}^0[a] + (a - b_{\lambda})) \upharpoonright (a \cap \lambda^+)$ and cofinal in $(\Pi(a \cap \lambda^+), <_{J})$. We now choose $f_{\lambda,\alpha}$ by induction on α such that:

- (a) for α nonlimit, $f_{\lambda,\alpha}^* \leq f_{\lambda,\alpha} \in \Pi(\alpha \cap \lambda^+)$,
- (b) for $\beta < \alpha, f_{\lambda,\beta} <_J f_{\lambda,\alpha}$,
- (c) if α is limit, $|a| < \text{cf } \alpha < \text{Min } a$, then (ii) of 7.3(2) holds.

The only problematic point is, why, if $\alpha = \delta$, $|a| < cf \delta < \min a$, if we define $f_{\lambda,\delta}$ as required in (c), then it satisfies (b) and belongs to $\Pi(a \cap \lambda^+)$. The latter holds as there is a closed unbounded $C \subseteq \delta$, with $\operatorname{otp}(C) = \operatorname{cf}(\delta) < \min a$, so $f_{\lambda,\alpha}^0(\theta) \le \bigcup_{\beta \in C} f_{\lambda,\beta}^0(\theta) < \theta$ as $f_{\lambda,\beta}(\theta) < \theta$ and $\operatorname{cf} \theta = \theta \ge \min a > |C|$. Then we can prove by induction on n, $f_{\lambda,\alpha}^n(\theta) < \theta$, and then $f_{\lambda,\alpha}(\theta) < \theta$.

For the first point (for $\beta < \alpha = \delta$, $f_{\lambda,\beta} <_J f_{\lambda,\delta}$) for every $\theta \in a \cap \lambda^+$, for some club C_{θ} of δ we have

(*)
$$f_{\lambda,\delta}^0(\theta) = \bigcup \{ f_{\lambda,\beta}(\theta) : \beta \in C_{\beta} \}.$$

We can find $\gamma \in \bigcap_{\theta \in a \cap \lambda^+} C_{\theta}$, $\gamma > \beta$; by the induction hypothesis $f_{\lambda,\beta} <_J f_{\lambda,\gamma}$, whereas by $(*) f_{\lambda,\gamma} \le f_{\lambda,\delta}^0$. Trivially $f_{\lambda,\alpha}^n \le f_{\lambda,\alpha}^{n+1}$ so $f_{\lambda,\alpha}^0 \le f_{\lambda,\alpha}$. Together we finish.

- (2) By 7.4(3) for $\kappa = \aleph_0$ (see 7.2(4)).
- (3) Let $\bar{b} = \langle b_{\lambda} : \lambda \in c \rangle$; and for each $\lambda \in c$ we can find $\alpha = \alpha_{\lambda} < \lambda$ such that $g \upharpoonright b_{\lambda} < f_{\lambda,\alpha} \upharpoonright b_{\lambda} \mod J_{<\lambda}^{1,\kappa}$. Let $b_{\lambda}^* = \{\theta \in b_{\lambda} : g(\theta) < f_{\lambda,\alpha}(\theta)\}$, so $b_{\lambda}^* \subseteq b_{\lambda}$ and $b_{\lambda} \setminus b_{\lambda}^* \in J_{<\lambda}^{1,\kappa}$. If for some $d \subseteq c$, $|d| < \kappa$ and $a = \bigcup_{\lambda \in d} b_{\lambda}^*$, we are done; otherwise let J be the κ -complete filter generated by $\{b_{\lambda}^* : \lambda \in c\}$, let μ be minimal in c such that $J_{<\mu}^{1,\kappa} = a \not\subseteq J$. Necessarily $\mu \in \operatorname{pcf}^{1,\kappa}(a) \subseteq c$, and choose $d \in J_{<\mu}^{1,\kappa} = a \cap J$; so $d = b_{\mu} \in J_{<\mu}^{1,\kappa} = a \cap J$ and $b_{\mu} = b_{\mu}^* \in J_{<\mu}^{1,\kappa} = a \cap J$, together $d \in J$, contradiction.
 - 7.5. CLAIM. Suppose
 - (a) $|a|^+ < \min a$,
 - (b) $\bar{b} = \langle b_{\theta} : \theta \in c \rangle$ is a weak generating sequence for a,
 - (c) $\bar{f} = \langle \langle f_{\lambda,\alpha} : \alpha < \lambda \rangle : \lambda \in c \rangle$ is a * continuous cofinality sequence for (a, b),
 - (d) χ is large enough, $|a| < \sigma < \min a$, $\sigma = \text{cf}(\sigma)$, $N_i < (H(\chi), \in, <^*_{\chi})$ for $i \le \sigma$, $N_i \in N_{i+1}$,

$$[i < j < \sigma \Rightarrow N_i < N_i], \quad a \in N_0, \quad \bar{f} \in N_0, \quad c \cup a \subseteq N_0,$$

 $||N_i|| < \text{Min } a$, and for $i \text{ limit } N_i = \bigcup_{j < i} N_j$,

- (e) define $g_i \in \Pi a$ by $g_i(\theta) = \sup(N_i \cap \theta)$ (for $i \leq \sigma$). Then
 - (a) for $\lambda \in c$, $\delta \leq \sigma$, $cf(\delta) \in (|a|, Min a)$ we have $f_{\lambda,g_{\delta}(\lambda)} \leq g_{\delta} \upharpoonright (a \cap \lambda^{+})$,
 - (β) for $\lambda \in c$, $\delta \leq \sigma$, cf $\delta \in (|a|, \text{Min } a)$ we have $f_{\lambda,g_{\delta}(\lambda)} \upharpoonright b_{\lambda} = g_{\delta} \upharpoonright b_{\lambda}$ mod $J_{<\lambda}^{0}[a]$,
 - (γ) if \bar{b} is a κ-almost generating sequence, $\delta \le \sigma$, cf $\delta > |a|$, $c = \text{pcf}^{1,\kappa}(a) = \text{Dom } \bar{b}$, then for some $d \subseteq c$, $|d| < \kappa$ and $g_{\delta} = \text{Max}\{f_{\lambda,g_{\delta}(\lambda)} : \lambda \in d\}$,
 - (\delta) if $\langle b_i^{\lambda} : i_{\lambda}(*) \leq i < \lambda \rangle \in N_0$ are as in $5.7(D)^+$ then (if $\delta \leq \sigma$, cf $\delta \in (|a|, \text{Min } a)$)

$$d_{\lambda} \stackrel{\text{def}}{=} \{ \theta \in a \cap \lambda^+ : f_{\lambda, g_{\delta}(\lambda)}(\theta) = g_{\delta}(\theta) \}$$

satisfies $d_{\lambda} \in J^0_{<\lambda^+}[a]$, $b^{\lambda}_{g_{\delta}(\lambda)} = d_{\lambda} \mod J^0_{<\lambda}[a]$,

- (ϵ) if $\lambda \in c$, $\delta \leq \sigma$, $\mathrm{cf}(\delta) > |a|$, then $g_{\delta} \upharpoonright b_{\lambda}$ is the $<_{J_{<\lambda}[\lambda]}$ -lub of $\{f_{\lambda,\alpha} \upharpoonright b_{\lambda} : \alpha < g_{\delta}(\lambda)\}.$
- 7.5A. REMARK. (1) Using $J_{<\kappa}^{1,\kappa}[a]$ ($\lambda \in pcf^{1,\kappa}(a)$) we have parallel results: if we restrict ourselves to cf $\delta \in [\aleph_1, \kappa)$ the same continuity notion is O.K. (i.e. in addition to cf(δ) $\in [|a|^+$, Min a)).
- (2) For cf $\delta = \aleph_0$, we should have a preassigned unbounded $C_{\delta} \subseteq \delta$, otp $C_{\delta} = \omega$ for $\delta < \lambda$, cf $\delta = \aleph_0$, and use $C \subseteq C_{\delta}$ in the definition of continuous.

PROOF. Note that if $i < j \le \sigma$ then $g_i \in N_j$, so as $a \subseteq N_0$, $g_i < g_j$. As $\bar{f} \in N_0 < N_i$ and $a \subseteq N_0 < N_i$ for each $\theta \in a$, $g_i(\theta) \in N_j$ hence $f_{\theta,g_i(\theta)} \in N_j$ hence (as Dom $f_{\theta,g_i(\theta)} = a \cap \lambda^+ \subseteq N_0 < N_j$) we have Rang $f_{\theta,g_i(\theta)} \subseteq N_j$. By the definition of g_j this implies $f_{\theta,g_i(\theta)} \le g_j \upharpoonright (a \cap \theta^+)$. Let $f_{\lambda,\alpha}^n (\lambda \in c, n < \omega, cf \alpha \in [|a|^+, Min a))$ be as in 7.3.

Note that for $\theta \in a$, $\langle g_i(\theta) : i \leq \sigma \rangle$ is strictly increasing continuous. So for limit $\delta \leq \sigma$, $cf(g_{\delta}(\theta)) = cf(\delta)$, and $C_{\theta} \stackrel{\text{def}}{=} \{g_i(\theta) : i < \delta\}$ is a club of $g_{\delta}(\theta)$. So as \bar{f} is * continuous, if $\delta \leq \sigma$, $|a| < cf(\delta) < \text{Min } a$, then $f_{\theta,g_{\delta}(\theta)}^{0}$ is defined by:

for
$$\zeta \in a \cap \theta$$
, $f_{\theta,g_{\delta}(\theta)}^{0}(\zeta) = \min \left\{ \bigcup_{\beta \in C} f_{\theta,\beta}(\zeta) : C \subseteq g_{\delta}(\theta) \text{ a club} \right\}$.

Using C_{θ} we get

$$f^0_{\theta,g_{\delta}(\theta)}(\zeta) \leq \bigcup_{\beta \in C_{\theta}} f_{\theta,\beta}(\zeta) = \bigcup_{i < \delta} f_{\theta,g_{i}(\theta)}(\zeta).$$

But we have noted above that $i < \delta \Rightarrow f_{\theta,g_{\delta}(\theta)} \leq g_{\delta} \upharpoonright (a \cap \theta^{+})$. So $f_{\theta,g_{\delta}(\theta)}^{0} \leq g_{\delta} \upharpoonright (a \cap \theta^{+})$. The same argument shows that if $\lambda \in C$, $\gamma < \lambda$, $\gamma \in \operatorname{cl}(\lambda \cap N_{\delta})$ (closure in the order topology), $\delta \leq \sigma$, $\dim a > \operatorname{cf} \delta > |a|$, then $\operatorname{Rang} f^{0} \subseteq \operatorname{cl}(\lambda \cap N_{\delta})$, noting

cf
$$\gamma \neq$$
 cf $\delta \& \gamma \in cl(\lambda \cap N_{\delta}) \rightarrow \gamma \in N_{\delta} \rightarrow f_{\lambda, \gamma}^{0} \in N_{\delta} \rightarrow Range f_{\lambda, \gamma}^{0} \subset N_{\delta}$

so $\gamma \in \operatorname{cl}(\lambda \cap N_{\delta}) \to \operatorname{Rang} f_{\lambda,\gamma}^{0} \subseteq N_{\delta}$. Now we can prove by induction on $\lambda \in C$ that

(*) $\delta \leq \sigma$, $|a| < \operatorname{cf} \delta < \operatorname{Min} \alpha$, $\gamma \in \operatorname{cl}(\lambda \cap N_{\delta})$, $n < \omega$; we have Rang $f_{\lambda,\delta}^n \subseteq \operatorname{cl}(N_{\delta} \cap \lambda)$ (this by induction on n); hence Rang $f_{\lambda,\gamma} \subseteq \operatorname{cl}(\lambda \cap N_{\delta})$. So we have proved (α) .

On the other hand, for each $\lambda \in c$, $i < j \le \sigma$, as $g_i \in (\Pi a) \cap N_j$, for some $\alpha = \alpha(\lambda, i)$ we have

$$\alpha \in N_i$$
, $g_i < f_{\lambda,\alpha} \mod(J_{<\lambda}^0[a] + (a - b_{\lambda}))$.

Now w.l.o.g., as $\alpha \in N_i$ we have $\alpha < g_i(\lambda)$, so

$$f_{\lambda,\alpha} < f_{\lambda,\alpha(\lambda)} \mod(J_{<\lambda}^0[a] + (a - b_{\lambda})),$$

hence

$$g_i < f_{\lambda,g_j(\lambda)} \operatorname{mod}(J^0_{<\lambda}[a] + (a - b_{\lambda})).$$

So if $\delta \leq \sigma$, $|a| < \text{cf } \delta$, we have

$$g_i < f_{\lambda,g_{\delta}(\lambda)} \mod(J_{<\lambda}^0[a] + (a - b_{\lambda}))$$
 for each $i < \delta$.

Let, for $i \leq \delta$, $c_i \stackrel{\text{def}}{=} \{\theta \in a \cap \lambda^+ : g_i(\theta) > f_{\lambda,g_\delta(\lambda)}(\theta)\}$. Now as $[i < j \Rightarrow g_i \leq g_j]$ we have $[i < j \Rightarrow c_i \subseteq c_j]$, so $(\text{as cf}(\delta) > |a| = |\text{Dom } g_i|) \ \langle c_i : i < \delta \rangle$ is eventually constant (by the definition of the c_j 's and as $\langle g_j(\theta) : j \leq \delta \rangle$ is increasingly continuous). As $c_\delta = \bigcup_{j < \delta} c_j$, so $c_\delta = c_i$ for some $i < \delta$. But we have shown above that for $i < \delta$, $c_i \in (J^0_{<\lambda}[a] + (a - b_\lambda))$; so $c_\delta \in J^0_{<\lambda}[a] + (a - b_\lambda)$, hence

$$\{\theta \in a \cap \lambda^+ : g_\delta(\theta) > f_{\lambda,g_\delta(\lambda)}(\theta)\} \in (J^0_{<\lambda}[a] + (a - b_\lambda)),$$

therefore

$$g_{\delta} \leq f_{\lambda,g_{\delta}(\lambda)} \operatorname{mod}(J^{0}_{<\lambda}[a] + (a - b_{\lambda})).$$

As we have proved (a), if cf $\delta \in (|a|, \text{Min } a)$,

$$g_{\delta} \upharpoonright b_{\lambda} = f_{\lambda, g_{\delta}(\lambda)} \operatorname{mod}(J^{0}_{<\lambda}[a] + (a - b_{\lambda})),$$

i.e. we get (β) .

Now (γ) , (ε) is left to the reader.

For a fixed λ let $g \in \Pi a$ be as in 5.7(D); w.l.o.g. $g \in N_0$. Let $d_{\lambda} \stackrel{\text{def}}{=} \{\theta \in a \cap \lambda^+ : g_{\delta}(a) = f_{\lambda,g_{\delta}(\lambda)}(\theta)\}$. By the definition of d_{λ} (as $g < g_{\delta}$ since $g \in N_{\delta}$) we have

$$\theta \in d_{\lambda} \rightarrow g(\theta) < f_{\lambda,g_{\delta}(\lambda)}(\theta),$$

i.e. (noting that the minimal i(*) satisfying 5.7(D)⁺ belongs to N_0 and $i(*) + g_i(\lambda) = g_i(\lambda)$ for every i) by 5.7(D)⁺

$$(*) \ d_{\lambda} \cap (a \setminus b_{g_{\delta}(\lambda)}^{\lambda}) \in J_{<\lambda}^{0}[a], \quad \text{i.e.} \ d_{\lambda} \subseteq b_{g_{\delta}(\lambda)}^{\lambda} \ \text{mod} \ J_{<\lambda}^{0}[a].$$

On the other hand by (E) of 5.7 (and 5.5) certainly for every $\alpha < \delta$, $i \in \lambda \cap N_{\alpha}$, if $i \geq i(*)$, then proof of (β) (of (7.5) holds also if we replace b_{λ} by b_{λ}^{λ} , hence

$$f_{\lambda,g_{\delta}(\lambda)} \upharpoonright b_i^{\lambda} = g_{\delta} \upharpoonright b_i^{\lambda} \mod J_{<\lambda}^0[a],$$

hence $b_i^{\lambda} \subseteq d_{\lambda} \mod J^0_{<\lambda}[a]$.

To finish by (*) above we need just $b_{\delta}^{\lambda} \subseteq d_{\lambda} \mod J_{<\lambda}^{0}[a]$; look at the proof of 5.7 and note:

7.6A. SUBCLAIM. In 5.7, if $\langle f_i : i < \lambda \rangle$ is continuous (i.e. for $\delta < \lambda$, $|a| < \text{cf } \delta < \text{Min } a, f_{\delta}(\theta) = \text{Min}\{\bigcup_{\alpha \in C} f_{\alpha}(\theta) : C \subseteq \delta \text{ a club}\}$, then for $d \subseteq a$, if $b_i \subseteq d \mod J_{<\lambda}^0[a]$ for arbitrarily large $i < \delta$, then $b_{\delta} \subseteq d \mod J_{<\lambda}^0[a]$.

PROOF OF 7.6A. Look at (iii) in the proof of 5.7.

7.6. LEMMA. Suppose $|a| < \min a$, $\delta = \langle b_{\lambda} : \lambda \in a \rangle$ is a weak generating sequence for a.

Then we can find $\bar{b}' = \langle b'_{\lambda} : \lambda \in a \rangle$, $\bar{f} = \langle \langle f_{\lambda \alpha} : \alpha < \lambda \rangle : \lambda \in a \rangle$ such that:

- (a) b' is a smooth generating sequence,
- (β) for $\lambda \in a$, $b_{\lambda} \subseteq b'_{\lambda} \mod J^0_{<\lambda}[a]$,
- (γ) \bar{f} is a nice cofinality system.

PROOF. Let $\bar{f} = \langle \langle f_{\lambda,\alpha}^* : \alpha < \lambda \rangle : \lambda \in a \rangle$ be a * continuous cofinality system for (a, b). By 5.7 we can define $\langle b_i^{\lambda} : i_{\lambda}(*) < i < \lambda \rangle$, g^{λ} as there, satisfying (A)-(E) of 5.7. W.l.o.g. $i_{\lambda}(*) = 0$. We now define, by induction on $\lambda \in a$, $\langle f_{\lambda,\alpha} : \alpha < \lambda \rangle$. We define $f_{\lambda,\alpha}$ by induction on α such that:

- (1) $f_{\lambda,\alpha+1}^* \leq f_{\lambda,\alpha+1} \in \Pi(a \cap \lambda^+);$
- (2) for $\beta < \alpha$, $f_{\lambda,\beta} \upharpoonright b_{\lambda} < f_{\lambda,\alpha} \upharpoonright b_{\lambda} \mod J^0_{<\lambda}[a]$;

(3) if $\alpha < \lambda$, cf $\alpha \le |a|$ or cf(α) \ge Min a, we choose $f_{\lambda,\alpha}$ satisfying the relevant cases of (1) and (2) and, if possible,

(*)
$$\theta \in \lambda \cap a \Rightarrow f_{\theta, f_{\alpha}(\theta)} \leq f_{\lambda, \alpha} \upharpoonright (a \cap \theta^+);$$

(4) if $\alpha < \lambda$, $|a| < \text{cf } \alpha < \text{Min } a$, then $f_{\lambda,\alpha}^0(\theta) = \text{Min}\{\bigcup_{\beta \in C} f_{\lambda,\beta}(\theta) : C \text{ a club of } \alpha\}$. $f_{\lambda,\alpha}^n$, $f_{\lambda,\alpha}$ are defined as in 7.3(2).

There are no problems in this.

Now choose χ large enough, $\sigma \stackrel{\text{def}}{=} |a|^+$ and $\langle N_i : i \leq \sigma \rangle$ increasingly continuous, $N_i \prec (H(\chi), \in, <_{\chi}^*)$, $||N_i|| = |a|^+$, $|a|^+ \subseteq N_i$, $N_i \in N_{i+1}$ and $\{\bar{f}, \langle \langle b_i^{\lambda} : i < \lambda \rangle : \lambda \in a \rangle, a\} \in N_0$. Now 7.5(α),(β) apply for $\delta = \sigma$, $\lambda \in a$ with b_i^{λ} for b_{λ} for any $i \in N_{\sigma}$. We can now show that in (3) above, (*) was always possible: if not there is a minimal λ for which it fails and then a minimal α . So (λ, α) is definable from parameters which belong to N_0 , hence $(\lambda, \alpha) \in N_0$. Now $g_{\sigma} \upharpoonright (a \cap \lambda^+)$ shows (*) is possible $(g_{\sigma}(\theta)) \stackrel{\text{def}}{=} \sup(\theta \cap N_{\sigma})$, of course). Moreover (*) now holds also if $\alpha < \lambda$, $|a| < \operatorname{cf}(\alpha) < \operatorname{Min} a$ when $\operatorname{cf}[f_{\lambda,\alpha}(\theta)] = \operatorname{cf} \alpha$. So \bar{f} is * continuous and nice. Now let

$$b'_{\lambda} = \{ \theta \in a \cap \lambda^+ : g_{\sigma}(\theta) = f_{\lambda, g_{\sigma}(\lambda)}(\theta) \};$$

they are as required.

§8. Kurepa trees from strong violation of GCH

8.1. LEMMA. (1) If $\lambda \in pcf(a)$, every $\lambda' \in pcf(a)$, is normal for a and for no inaccessible μ , $\mu = |pcf(a) \cap \mu|$, then for some $c \subseteq \lambda \cap pcf(a)$ with no last element

$$\lambda = \operatorname{tcf}(\Pi c, <_{J_{\epsilon}^{\operatorname{bd}}}).$$

(2) If $\lambda \in pcf(a)$, $\lambda = max[pcf(a)]$, $\sup \lambda \cap pcf(a)$ is singular, then for every unbounded $c \subseteq \lambda \cap pcf(a)$ of power < Min c,

$$\lambda = \operatorname{tcf}(\Pi c, <_{J_c^{\operatorname{bd}}}).$$

PROOF. (1) Find $b \in J_{\leq \lambda}[a] - J_{<\lambda}[a]$; by (2) we can find $c \subseteq \lambda \cap pcf(b)$ as required.

PROOF OF 8.1(1). In more detail, the proof is by induction on $\mu = \sup \{\lambda \cap \operatorname{pcf} a\}$.

Case 1. In $\lambda \cap \operatorname{pcf}(a)$ there is no last element. So μ is a limit cardinal and cannot be inaccessible by a hypothesis. So μ is singular. We can find $c \subseteq \operatorname{pcf}(a) \cap \mu$, $|c| = \operatorname{cf}(\mu)(<\mu)$, $(\operatorname{cf} \mu)^+ < \operatorname{Min} c$.

By part (2) of 8.1, $\lambda = \operatorname{tcf} \Pi c/J_c^{\mathrm{bd}}$.

- Case 2. Not 1, so $\lambda \cap \operatorname{pcf}(a)$ has a last element κ say; so κ is normal for a, then b_{κ}^{a} is defined, and necessarily $\lambda \in \operatorname{pcf}(a \setminus b_{\kappa}^{a})$; but $\kappa \notin \operatorname{pcf}(a \setminus b_{\kappa}^{a})$, so if $\sup(\operatorname{pcf}(a) \cap \lambda) = \kappa$, we get Case 1, otherwise we use induction hypothesis on κ .
 - (2) By 5.12.

PROOF of 8.1(2). Again the details are as follows: first max $pcf(c) \le \lambda$, as $pcf(c) \subseteq pcf(a)$ by 5.12. If $\neg [tcf(\Pi c, <_{J_c^{bd}}) = \lambda)$, then $J_{<\lambda}[c] \not\subseteq J_c^{bd}$ (definitions), so for some $d \subseteq c$, $d \notin J_c^{bd}$ and $\theta \stackrel{\text{def}}{=} \max pcf(d) < \lambda$.

Now $(\Pi d, <_{J_c^{\bowtie}})$ is $\sup(d)$ -directed, so $\theta \ge \sup(d)$; $\sup d$ is singular, so $\sup d < \theta < \lambda$. Now $d \subseteq \operatorname{pcf}(a)$ and $|d| \le |c| < \min c \le \min d$, hence $\operatorname{pcf}(d) \subseteq \operatorname{pcf}(c)$ by 5.12, but $\theta \in \operatorname{pcf}(d)$ so $\theta \in \operatorname{pcf}(c)$. $\sup(\operatorname{pcf} a \cap \lambda) = \sup c = \sup d < \theta < \lambda$ —contradiction.

- 8.2. Theorem. Suppose:
- (a) $\kappa = \operatorname{cf} \kappa > \aleph_0$,
- (b) $\langle \mu_i^* : i < \kappa \rangle$ is strictly increasing continuous,
- (c) $\mu_i^{**} = ((\mu_i^*)^{\kappa})^+$ is less than μ_{i+1}^* ,
- (d) $\mu = \sum_{i < \kappa} \mu_i^*$,
- (e) $\Sigma_{i<\kappa}|\operatorname{Reg}\cap(\mu_i^*,\mu_i^{**})|+|\operatorname{Reg}\cap(\mu,\mu^{\kappa})|<\mu.^{\dagger}$

Then we can find functions $\langle h_i : \lambda \in \text{Reg} \cap (\mu, \mu^{\kappa}] \rangle$ such that:

- (i) Dom $h_{\lambda} = \kappa$;
- (ii) $h_{\lambda}(i)$ is a finite subset of Reg $\cap \bigcup_{j \leq i} (\mu_j^*, \mu_j^{**})$;
- (iii) if $\lambda \neq \theta$ are from Reg $\cap (\mu, \mu^{\kappa}]$ and $i < \kappa$, then

$$h_{\lambda}(i) = h_{\theta}(i) \Longrightarrow h_{\lambda} \upharpoonright i = h_{\theta} \upharpoonright i.$$

- 8.2A. REMARK. (1) We ignore the possibility of exploiting " $|[\mu_i^*, \mu_i^{**}) \cap$ Reg| is small for a stationary set of *i*'s"; look at the proof and use Fodor's Lemma to do it.
 - (2) For $i < \kappa$ of cofinality \aleph_0 we can replace μ_i^{**} by

Min{
$$\lambda$$
: for no $\lambda_i \in [\mu_i^*, \mu_i^{**}], \lambda > \max \operatorname{pcf}\{\lambda_i : j < i\}$ }.

PROOF. Let $a_i = \text{Reg} \cap (\mu_i^*, \mu_i^{**}), \quad a = \bigcup_i a_i, \quad a_{\kappa} = \text{Reg} \cap (\mu, \mu^{\kappa}],$ $a^* = a \cup a_{\kappa}$. By assumption (e), $|a| < \mu$, hence w.l.o.g. |a| < Min a and even

[†] Reg is the class of regular cardinals.

 $(|a|^{\kappa})^{+} < \text{Min } a$. By the Galvin-Hajnal theorem $|a_{\kappa}| < (|a|^{\kappa})^{+}$, so $(|a^{*}|^{\kappa})^{+} < \text{Min } a^{*}$. For each $\lambda \in a^{*}$ we can choose b_{λ} such that:

- $(*)_a$ (i) $b_i \subseteq a^* \cap \lambda^+$;
 - (ii) $b_{\lambda} \in J^{0}_{<\lambda^{+}}[a] J^{0}_{<\lambda}[a];$
 - (iii) $J^0_{<\lambda^+}[a] = J^0_{<\lambda}[a] + b_{\lambda}$

(use 7.2(3)).

Now by 7.6, w.l.o.g. $\langle b_{\lambda} : \lambda \in a^* \rangle$ is a smooth generating sequence. Note also that $pcf(c) \subseteq \bigcup_{i \le i} a_i$ for each $i < \kappa$ and $c \subseteq \bigcup_{j \le i} a_j$ of cardinality $\le \kappa$.

Now for each $\lambda \in \text{Reg} \cap (\mu, \mu^{\kappa}]$, there is $c_{\lambda} \in [a]^{\kappa}$ such that $\lambda \in \text{pcf}(c_{\lambda})$ (see [Sh 111], 2.10† or [Sh 282], 12). By 5.8(3) w.l.o.g. $\lambda = \text{max pcf}(c_{\lambda})$, hence $c_{\lambda_1} \neq c_{\lambda_2} \Leftrightarrow \lambda_1 \neq \lambda_2$. Let $c_{\lambda}^* = b_{\lambda}$, so $\lambda_1 \neq \lambda_2 \Leftrightarrow c_{\lambda_1}^* \cap \mu \neq c_{\lambda_2}^* \cap \mu$; so $\text{pcf}(c_{\lambda}^*) = c_{\lambda}^*$. So for every $i < \kappa$,

$$\operatorname{pcf}\left(c_{\lambda}^{*}\cap\bigcup_{j\leq i}a_{j}\right)=c_{\lambda}^{*}\cap\bigcup_{j\leq i}a_{j},$$

hence by 7.2(5) for some finite $d(\lambda, i) \subseteq c_{\lambda}^* \cap \bigcup_{j \le i} a_j$, $\bigcup \{b_{\theta} : \theta \in d(\lambda, i)\} = c_{\lambda}^* \cap \bigcup_{j \le i} a_j$. (We use smoothness.)

We can define h_{λ}^* ; $h_{\lambda}^*(i) = d(\lambda, i)$.

8.3. CONCLUSION. If $2^{\aleph_1} < \aleph_{\omega_1}$, $i < \omega_1 \Rightarrow \aleph_i^{\aleph_1} < \aleph_{\omega_1}$ and $(\aleph_{\omega_1})^{\aleph_1} = \aleph_{\alpha(*)}$, $\alpha(*) \ge \omega_2$, then there is an \aleph_1 -Kurepa tree with $\ge |\alpha(*)|$ branches.

Check (a)-(c) of 8.2, $\kappa = \aleph_1$, $\mu = \aleph_{\omega_1}$.

For the neophyte, the tree T is the following one:

The *i*th level is $T_i = \{h_{\lambda} \upharpoonright (\mu_i^*, \mu_i^{**}) : \lambda \in \text{Reg} \cap (\mu, \mu^{\kappa})\}$; the order is inclusion.

Clearly this is a tree with κ levels.

For $i < \kappa$, by (iii), $|T_i| \le |\{h_{\lambda}(i) : \lambda \in \text{Reg}\}|$ which, by (ii), has power $\le \aleph_0 + |(\mu_j^*, \mu_j^{**}]|$, and for each $\lambda \in \text{Reg} \cap (\mu, \mu^{\kappa})$ let $\eta_{\lambda} = \langle h_{\lambda} \upharpoonright i : i < \kappa \rangle$. η_{λ} is a κ -branch and clearly $h_{\lambda(1)} \ne h_{\lambda(2)} \ne \eta_{\lambda(1)} \ne \eta_{\lambda(2)}$, hence T has at least $|\text{Reg} \cap (\mu, \mu^{\kappa})|$ κ -branches.

[†] See paragraph before 2.8, and 2.8 which is from [GH]; there $\kappa = \omega_1$ is just for notational simplicity.

§9. Localizing pcf

- 9.1. CLAIM. Suppose $\langle a_i : i \leq \kappa \rangle$ is increasing continuous, κ regular and $a = a_{\kappa}$ satisfies
 - $(*)_1 | pcf(a)|^{\aleph_0} < Min a$

or even just

- (*)₂ there is a smooth generating sequence for pcf(a) and $|pcf(a_k)| < Min a$.
- (1) If $\lambda \in pcf(a_{\kappa}) \bigcup_{i < \kappa} pcf(a_i)$ then for some $b \subseteq \bigcup_{i < \kappa} pcf(a_i)$, $|b| \le \kappa$, $\lambda \in pcf(b)$.
 - (2) If $\lambda \in pcf(a_{\kappa}) \bigcup_{i < \kappa} pcf(a_i), \kappa > \aleph_0$ then
 - \oplus for some $S \subseteq \kappa$ unbounded, $\lambda_i \in pcf(a_i) \bigcup_{j < i} pcf(a_j)$ for $i \in S$, we have $tcf(\prod_{i \in S} \lambda_i, <_{J_i^{\bowtie}}) = \lambda$, max $pcf(\lambda_i : j < i) < \lambda_i$.
 - 9.1A. Question. What about pcf¹?
- 9.1B. REMARK. In (2), we can waive the last demand but have S a club; see 9.3.

PROOF. (1), (2). Let $\delta = \langle b_{\theta} : \theta \in pcf(a_{\kappa}) \rangle$ be a generating sequence (exists: if $(*)_1$, by 6.14; if $(*)_2$, trivially). W.l.o.g. (by 5.8) $\lambda = \max pcf(a_{\kappa})$ and $\lambda \cap pcf(a_{\kappa})$ has no last element. By 7.6 w.l.o.g. δ is smooth. By 7.2(5) for each i there is a finite $d_i \subseteq pcf(a_i)$ such that:

(1) $\operatorname{pcf}(a_i) \subseteq \bigcup_{\theta \in d_i} b_{\theta}, |d_i| < \aleph_0.$

Let $d = \bigcup_{i < \kappa} d_i$, so $d \subseteq \bigcup_{i < \kappa} \operatorname{pcf}(a_i)$, $|d| \le \kappa$, so $\operatorname{Min}(d) > |d|$. If $\operatorname{max} \operatorname{pcf}(d) < \lambda$, then $d \in J^0_{<\lambda}[\operatorname{pcf} a_{\kappa}]$, hence for some finite $c \subseteq \operatorname{pcf}(d)$, $\operatorname{pcf}(d) \subseteq \bigcup_{\theta \in c} b_{\theta}$, hence $\bigcup_{i < \kappa} \operatorname{pcf}(a_i) \subseteq \bigcup_{\theta \in c} b_{\theta}$, but

$$\lambda = \max \operatorname{pcf} a_{\kappa} \leq \max \operatorname{pcf} \left(\bigcup_{i < \kappa} \operatorname{pcf}(a_i) \right) \leq \max \operatorname{pcf} \left(\bigcup_{\theta \in c} b_{\theta} \right)$$
$$\leq \max_{\theta \in c} (\max \operatorname{pcf}(b_{\theta})) = \max(c) < \lambda;$$

contradiction.

By the same proof we know that

(2) for any unbounded $S \subseteq \kappa$, $\lambda \in \operatorname{pcf} \bigcup_{i \in S} d_i$.

So max $pcf(d) \ge \lambda$ but $pcf(d) \subseteq pcf(a_{\kappa}) \subseteq \lambda + 1$, so max $pcf(d) = \lambda$ which suffices for (1).

For (2) by Fodor's Lemma (note that κ is regular), so there are $\alpha < \kappa$, $n(*) < \omega$, and stationary $S \subseteq \kappa$ such that

$$d_i \cap \left(\bigcup_{j < i} \operatorname{pcf}(a_i) \right) \subseteq \operatorname{pcf}(a_a),$$

$$\left| d_i - \bigcup_{i < i} \operatorname{pcf}(a_i) \right| \equiv n(*).$$

We now define by induction on $l \le n(*)$, S_l , $d_{i,l}$ such that:

- (a) $S_0 = S$, $S_{l+1} \subseteq S_l$, $|S_l| = \kappa$,
- (β) $d_{i,0} = d_i \bigcup_{j < i} \operatorname{pcf}(a_j)$ for $i \in S_0$,
- (γ) $d_{i,l+1}$ is a proper subset of $d_{i,l}$ for $i \in S_{l+1}$,
- (δ) max pcf($\bigcup \{d_{i,l} d_{i,l+1} : i \in S_{l+1}\}$) $< \lambda$,
- (ϵ) for all $i \in S_l$, $|d_{i,l}| = n_l$.

We continue till we are stuck; say $\langle d_{i,l} : i \in S_l \rangle$ are defined for $l \leq m$, but not for l = m + 1. By (δ)

$$\max \operatorname{pcf}(\bigcup \{d_i - d_{i,l} : i \in S_l\}) < \lambda \quad \text{for } l \leq m$$

(just prove it by induction on l, using (δ) and 5.3(2)). However, as said above (in (2)), $\lambda = \max \operatorname{pcf} \bigcup_{i \in S_l} d_i$, we conclude $\lambda = \max \operatorname{pcf} (\bigcup \{d_{i,l} : i \in S_l\})$, hence $d_{i,l} \neq \emptyset$ for $i \in S_l$, so $S_{n(\bullet)}$ cannot be defined. If $\langle d_{i,m} : i \in S_m \rangle$ is last defined, $d^* = \bigcup_{i \in S_m} d_{i,m}$ satisfies almost all we need.

Now by the choice of m

$$c \subseteq d^* \& |c| = \kappa \rightarrow \lambda = \max \operatorname{pcf}(c).$$

(Otherwise $S'_{m+1} = \{i \in S_m : c \cap d_{i,m} \neq \emptyset \}$ is unbounded in κ , hence for some unbounded $S_{m+1} \subseteq S'_{m+1}$, and n_{m+1} :

$$[i \in S_{m+1} \Rightarrow |d_{i,l} - c| = n'_{m+1}]$$
: now S_{m+1} , and $d_{i,m+1} \stackrel{\text{def}}{=} d_{i,m} - c$ contradict the maximality of m .

On the other hand

$$c \subseteq d^* \& |c| < \kappa \Rightarrow (\exists i < \kappa)c \subseteq pcf(a_i)$$

 $\Rightarrow max pcf(c) < \lambda.$

We can easily make $pcf(d^*) - \{\lambda\}$ have no last element and its sup minimal (replacing d^* by $d' \subseteq d$; $|d'| = \kappa$). But $pcf(d^* \cap pcf(a_i))$ has a last element (which is $<\lambda$), so $\langle \lambda_i \stackrel{\text{def}}{=} \max pcf(d^* \cap pcf(a_i) : i < \kappa \rangle$ is monotonic increasing and not eventually constant, and $\max pcf\{\lambda_i : i < j\} < \sup\{\lambda_i : i < j\}$. So we have proved 9.1(2) too.

- 9.2. CLAIM. Suppose
- $(*)_1 |\operatorname{pcf}(a)|^{\aleph_0} < \operatorname{Min}(a)$

or just

 $(*)_2$ there is a generating sequence for pcf(a), and

$$|pcf(a)| < Min a$$
.

If $b \subseteq pcf(a)$, $\lambda \in pcf(b)$, then for some $b' \subseteq b : |b'| \le |a|$, $\lambda \in pcf(b')$.

PROOF. We prove it by induction on |b| and for a fixed |b| by induction on λ . We can ignore the case "a is finite"; and w.l.o.g. $b = \max pcf(a)$.

Case A: $|b| \leq |a|$.

Trivial, let b' = b.

Case B: |b| > |a|.

Let $\kappa = \operatorname{cf}(|b|)$.

Let $\langle b_i : i < \kappa \rangle$ be increasingly continuous, $|b_i| < \kappa$, $b = \bigcup_{i < \kappa} b_i$. If for some $i < \kappa$, $\lambda \in \operatorname{pcf}(b_i)$, by the induction hypothesis there is $b' \subseteq b_i$ such that $\lambda \in \operatorname{pcf}(b')$, $|b'| \le \kappa$ and we finish. So w.l.o.g. for $i < \kappa$, $\lambda \notin \operatorname{pcf}(b_i)$. Now if $\kappa = \aleph_0$ we use 9.1(1): so there are $\lambda_n \in \operatorname{pcf}(b_n)$ for $n < \omega$ such that $\lambda \in \operatorname{pcf}\{\lambda_n : n < \omega\}$. By the induction hypothesis for each n for some $b'_n \subseteq b_n$, $|b'_n| \le |a|$ and $\lambda_n \in \operatorname{pcf}(b'_n)$. So $\bigcup_{n < \omega} b'_n$ is as required. So assume $\kappa > \aleph_0$. By 9.1(2) for some $\lambda_i \in \operatorname{pcf}(b_i)$, max $\operatorname{pcf}\{\lambda_j : j < i\} < \lambda_i$, $\operatorname{tcf}(\Pi\lambda_i, <_{j_n}) = \lambda$. For each $i < \kappa$, there is $b'_i \subseteq b_i$ such that $|b'_i| \le |a|$ and $\lambda_i \in \operatorname{pcf}(b'_i)$. If |b| is singular, we have

$$\left| \bigcup_{i < \kappa} b'_i \right| \le \kappa + |a| = \operatorname{cf}(|b|) + |a| < |b|$$

and as $\lambda \in pcf(\{\lambda_i : i < \kappa\}) \subseteq pcf \bigcup_{i < \kappa} b'_i$, by the induction hypothesis on |b| there is $b' \subseteq \bigcup_{i < \kappa} b'_i$, $\lambda \in pcf(b')$, so we finish.

Hence w.l.o.g. $\kappa = |b|$, let $c_i = \{\lambda_j : j < i\}$. Let (see 7.6) $\langle b_\theta : \theta \in \operatorname{pcf}(a) \rangle$ be a smooth generating sequence for $\operatorname{pcf}(a)$. Let (by 7.2(5)) for each $i < \kappa$, d_i be a finite subset of $\operatorname{pcf}(c_i)$ such that $\operatorname{pcf}(c_i) \subseteq \bigcup_{\theta \in d_i} b_\theta$. Now $\langle \bigcup_{\theta \in d_i} b_\theta : i < \kappa \rangle$ is increasing (since for i < j, $d_i \subseteq \operatorname{pcf}(c_i) \subseteq \operatorname{pcf}(c_j) \subseteq \bigcup_{\theta \in d_i} b_\theta$ and $\tau \in \bigcup_{\theta \in d_j} b_\theta \Rightarrow b_\tau \subseteq \bigcup_{\theta \in d_i} b_\theta$) and hence so is $\langle a \cap (\bigcup_{\theta \in d_i} b_\theta) : i < \kappa \rangle$. As $\kappa > |a|$ the sequence is constant for $i \in [i(*), \kappa)$ for some $i(*) < \kappa$. But (remember that $\theta = \max b_\theta$ (trivially) hence $\max \operatorname{pcf}(\bigcup_{\theta \in d_i} b_\theta) = \max \operatorname{pcf}(c_i) = \max \bigcup_{\theta \in d_i} b_\theta = \max d_i$):

$$\max \operatorname{pcf}\left(a \cap \left(\bigcup_{\theta \in d_{i(\bullet)+1}} b_{\beta}\right)\right) = \operatorname{Max} d_{i(\bullet)+1}$$

$$= \operatorname{max} \operatorname{pcf}(c_{i(\bullet)+1})$$

$$< \lambda_{i(\bullet)+1}$$

$$\leq \operatorname{max} \operatorname{pcf}\left(a \cap \left(\bigcup_{\theta \in d_{i(\bullet)+1}} b_{\theta}\right)\right),$$

contradiction by the previous sentence.

9.3. LEMMA. If $(\forall \chi < \mu)(\chi^{\kappa} < \mu)$, $cf(\mu) = \kappa > \aleph_0$, $\langle \mu_i : i < \kappa \rangle$ is increasingly continuous, $\bigcup_{i < \kappa} \mu_i = \mu$, $a_i = \text{Reg } \cap (\mu_i, \mu_i^{\kappa}]$, $a = \bigcup_{i < \kappa} a_i$.

Then for any regular cardinal $\lambda \in (\mu, \mu^{\kappa}]$ there is $c_{\lambda} \subseteq a$, $|c_{\lambda}| = \kappa$, $\mu = \sup(c_{\lambda})$ such that $\operatorname{tcf}(\Pi c_{\lambda}, <_{J_{\alpha}^{\omega}}) = \lambda$ and $\{i < \kappa : c_{\lambda} \cap (\mu_{i}, \mu_{i}^{\kappa}] \neq \emptyset\}$ is closed unbounded.

PROOF. W.l.o.g. $\mu_0 > 2^{\kappa}$.

Let $b_i = \bigcup_{j \le i} a_j$, so $\langle b_i : i < \kappa \rangle$ is increasing, $b_i = \operatorname{pcf}(b_i)$. By [Sh 111], 2.10 for every $\lambda \in \operatorname{Reg} \cap (\mu, \mu^{\kappa}]$, $\lambda \in \operatorname{pcf}(c)$ for some $c \subseteq a$, $|c| \le \kappa$. Let $c_i^{\lambda} = \operatorname{pcf}(c) \cap b_i$, as $2^{|c|} \le 2^{\kappa} < \mu_0 < \operatorname{Min} c$, we can apply claim 9.1(2) to $\langle c_i^{\lambda} : i < \kappa \rangle$ to get $\langle \lambda_i : i < \kappa \rangle$. Now $c_{\lambda} \stackrel{\text{def}}{=} (\operatorname{pcf}\{\lambda_j : j < \kappa\}) \cap \mu$ is as required.

§10. Consistency of uniform copies of ω_1

10.1. THEOREM. $V \models "S = \{\kappa < \lambda : \kappa \text{ measurable}\}\ is\ stationary".$ Then for some semi-proper $P, |P| = \lambda, P \models \kappa\text{-c.c.}$ and

 \Vdash_P "for every partition of $\mathcal{P}(\omega_1)$ to 2 there is a monochromatic homomorphic copy of ω_1 (in topology)".

PROOF. We have \diamond_S w.l.o.g. We define by induction on $\alpha < \kappa$ a RCS iteration

$$\langle P_i \cdot Q_j : i \leq \alpha, j < \alpha \rangle$$

such that

(*) each Q_i is semi-proper,

$$|P_i| \leq a_{i+3}$$
.

We know semi-properness is preserved (see [Sh A2], Ch. X, §2).

For most j, $Q_i = \text{Levi}(\aleph_1, 2^{2^{\aleph_1}})$. For $\kappa \in S$ we know that in $V^{P_{\kappa}}$

(
$$\bigoplus$$
) \forall countable $N < (H(\mathbf{z}_8), \in) \exists N' N < N' < (H(\mathbf{z}_8), \in)$
and $N \cap \omega_1 = N' \cap \omega_1$ and $\sup(N \cap \omega_2) < \sup(N' \cap \omega_2)$

(essentially see [Sh A2, Ch. XII, §2], strictly [Sh 253] 1.9, 1.9A(3)).

 \diamond_S gives us a P_{κ} -name $f = f_{\kappa}$.

Assume $\Vdash_{P_n} f: \mathscr{P}(\omega_1) \to \{\tilde{\text{green}}, \text{ red}\}\$ (otherwise use the usual Q_{κ}).

If in V^{P_n} for \tilde{f} there is a homogeneous green set as required, do as usual: Levi collapse.

If not, let, in $V^{P_{\kappa}}$, $\mathscr{P} = \{A \subseteq \omega_1 : A \text{ non-stationary}\},$

$$Q_{\kappa} = \{ \langle A_i : i \leq \alpha \rangle : A_i \subseteq \omega_1, A_i \in \mathscr{P} \text{ strictly increasing, continuous in } i \text{ and } f(A_i) = \text{red} \}$$

(the only properties of the family of non-stationary sets we use are: union of \aleph_0 is again in the family and is $\neq \omega_1$, and):

10.2. CLAIM. For N, N' from \oplus necessarily in $V^{P_{\kappa}}$,

$$\bigcup_{A \in N \cap \mathscr{P}} A \neq \bigcup_{A \in N' \cap \mathscr{P}} A.$$

PROOF. For our iteration in $V^{P_{\kappa}}$, $2^{\aleph_1} = \aleph_2$. So $\mathscr{P} = \{B_{\alpha} : \alpha < \omega_2\}$. We can define $h : \omega_2 \to \mathscr{P}$,

$$h(\alpha) = \text{Min}\{\gamma: B_{\gamma} \text{ is not included in any union of countably many sets from } \{B_i: j < \alpha\}\}.$$

Easily h is well defined (even if \neg CH)[†] and such $\langle B_{\alpha} : \alpha < \omega_2 \rangle$, h belong to N. Choose now $\alpha \in N' \cap \omega_2 \setminus N$. So $\bigcup_{A \in N \cap \mathscr{P}} A \not\supseteq A_{h(\alpha)} \subseteq \bigcup_{A \in N' \cap \mathscr{P}} A$ as

$$N \cap \mathscr{P} \subseteq \{B_{\gamma} : \gamma \in N \cap \omega_2\} \subseteq \{B_{\gamma} : \gamma < \alpha\}.$$

10.3. CLAIM. Q_{κ} is semi-proper (in $V^{P_{\kappa}}$).

Proof. Let $N < (H(z_8), \in)$ be countable, $p \in Q_{\kappa} \cap N$.

We can define (use \oplus repeatedly) N_{α} ($\alpha < \omega_1$) increasingly continuous, $N_{\alpha} < (H(\mathbf{z}_8), \in)$, $N_{\alpha} \cap \omega_1 = N \cap \omega_1$, $\langle \sup(N_{\alpha} \cap \omega_2) : \alpha < \omega_2 \rangle$ strictly increasing. Now " $\Lambda_{\alpha < \omega_1} f(\bigcup_{A \in \mathscr{P} \cap N_{\alpha}} A) = \text{green}$ " is impossible as then $\langle f(\bigcup_{A \in \mathscr{P} \cap N_{\alpha}} A) : \mathcal{P}(\mathcal{P}) = \mathcal{P}(\mathcal{P}) = \mathcal{P}(\mathcal{P})$.

[†] By the diagonal union for some $B \in \mathcal{P}$, $[j < \alpha \Rightarrow B_j \setminus B \text{ countable}]$, $B_{\gamma} = \{i < \omega_1 : i \in B \text{ or } i = \sup(i \cap B) \text{ but otp}(i \cap B) \text{ not divisible by } \omega^2\}$.

 $\alpha < \omega_1 \rangle$ is a green set. So $\exists \alpha \ f(\bigcup_{A \in \mathscr{P} \cap N_\alpha} A) = \text{red. In } N_\alpha \text{ choose } p_n \in N \cap Q_\kappa,$ $p_0 = p$, p_n increasing, $(\forall D \in N)$ [D dense subset of $Q_\kappa \to V_n \ p_n \in D$]. It is enough " $\bigcup p_n$ has a limit". Let $p_n = \langle B_\zeta : \zeta \leq \alpha_n \rangle$, α_n increasing.

10.4. CLAIM. If $A \in \mathcal{P} \cap N_{\alpha}$ then $(\exists n)A \subseteq B_{\alpha}$.

PROOF. $D_0 = \{ \langle B'_\zeta : \zeta \leq \alpha \rangle \in Q_\kappa : A \subseteq B'_\alpha \}$ is a dense subset of Q_κ : if $\langle B'_\zeta : \zeta \leq \beta \rangle \in Q_\kappa$ also $(\exists X) \in \mathscr{P})(X \operatorname{red} \wedge X \supseteq B'_\zeta \cup A)$ — (if not we have a green cone), then $\langle B'_\zeta : \zeta \leq \beta \rangle \wedge \langle X \rangle \in D_0$. Now $D_0 \in N_\alpha$ so use definition of the p_n above.

CONTINUATION OF PROOF OF 10.3. By the claim

$$\bigcup_{\zeta<\cup_n\alpha_n}B_\zeta=\bigcup_{A\in\mathscr{P}\cap N_\alpha}A$$

which is red by choice of α . So $\langle B_{\zeta}: \zeta < \bigcup_{n} \alpha_{n} \rangle \wedge \langle \bigcup_{A \in \mathscr{P} \cap N_{\alpha}} A \rangle$ is a limit of $\langle p_{n}: n < \omega \rangle$, belongs to Q_{κ} , so we have finished the proof of " Q_{κ} is semi-proper", hence of 10.1.

10.5. REMARK. What about partitions of $\mathcal{P}_{<\aleph_1}(\aleph_2)$?

Velickovic and I discussed it in Arcta: from 2 colors, you cannot get rid of any; from 3, you can get rid of 1.

§11. On a problem of Archangelski

- 11.1. Example. (Answer q. 3 of Archangelski). Let λ be a cardinal. There is a space $X = X_1$:
 - (1) with a basis of clopen sets (so it is a T_2 and T_3 space),
 - (2) $\Delta(X) = \psi(X) = \aleph_0$, i.e. in $X \times X$, the diagonal is the intersection of countably many open sets (hence every $x \in X$ has pseudo-character \aleph_0),
 - (3) cellularity $(X) = \aleph_0$,
 - $(4) |X_{\lambda}| = \lambda.$
- 11.1A. Construction. We define for $n < \omega$, $0 < m < \omega$ what is an m-place term $(0 < m < \omega)$ of depth < n, by induction on n (for such a term, $m = m[\tau]$, $n = n[\tau]$ are determined uniquely).

n = 0: it is a sequence $\tau = \langle 0, m \rangle$;

n > 0: for some terms $\tau_0, ..., \tau_{k-1}$ $(k < \omega)$, $n[\tau_i] < n$, and functions $h: \{0, ..., k-1\} \rightarrow \{1, -1\}$, $g: \{0, ..., k-1\} \rightarrow \{i: 0 < i < \omega\}$

and for i < k strictly increasing functions $f_i: \{0, 1, ..., m[\tau_i] - 1\} \rightarrow \{0, 1, ..., m - 1\}$

such that (*) if l_1 , $l_2 < k$, $\tau_{l_1} = \tau_{l_2}$, $h(l_1) = 1$, $h(l_2) = 1$, then $g(l_1) = g(l_2)$.

Let $\tau = \langle n, m, \langle \tau_i : i < k \rangle, h, g, \langle f_i : i < k \rangle \rangle$ and we write $\tau_i = \tau_i[\tau], h = h[\tau], k = k[\tau],$ etc.

- 11.1B. Observation. The set of terms is countable.
- 11.1C. The set of points. Now the set of points of X_{λ} is

 $\{\langle \tau, \bar{\alpha} \rangle : \tau \text{ a term, } \bar{\alpha} \text{ an increasing sequence of ordinals } < \lambda \text{ of length } m[\tau] \}.$

We write $\tau(\bar{\alpha})$ instead of $\langle \tau, \bar{\alpha} \rangle$.

11.1D. A basis and a pseudo nb basis for each point. For each $0 < l < \omega$ and $x \in X_l$ we define sets u_x^l :

$$u_x^l = \{x\} \cup \{y : \text{ for some terms } \tau, \sigma \text{ and ordinals } \alpha_0 < \cdots < \alpha_{m(\tau)-1} \}$$

we have $x = \tau(\langle \alpha_0, \dots, \alpha_{m(\tau)-1} \rangle), y = \sigma(\beta_0, \dots, \beta_{m(\sigma)-1})$
and for some $i < k[\sigma] : \tau_i[\sigma] = \tau, h[\sigma](i) = +1,$
 $[l < m(\tau) \& f_i[\sigma](l) = j \Rightarrow \alpha_l = \beta_i \text{ and } g[\sigma](i) \ge l]\}.$

Note that $\bigoplus u_x^{l+1} \subseteq u_x^l$.

Now the topology of X_{λ} has the following base:

$$\left\{ \bigcap_{i=0}^{p-1} \left[u_{x(i)}^{l(i)} \right)^{\varepsilon(i)} : p < \omega, x(i) \in X_{\lambda}, l(i) < \omega, \varepsilon(i) \in \{1, -1\} \text{ and} \right.$$

$$\left[i, j < p, x(i) = x(j), \varepsilon(i) = 1, \varepsilon(j) = -1 \Rightarrow l(i) > l(j) \right] \right\}$$

where $u^1 = u$, $u^{-1} = X_1 - u$ for $u \subseteq X_1$.

11.1E. Explanation. We build the space like a free algebra. Each point x has a pseudo nb basis $\{u_x^l: n<\omega\}$, such that $u_x^{l+1}\subseteq u_x^l$, $\bigcap_{l<\omega}u_x^l=\{x\}$ (so $\psi(X_\lambda)=\aleph_0$); moreover

$$\bigcap_{l<\omega}\left(\bigcup_{x\in X_1}u_x^l\times u_x^l\right)=\{(x,x)\colon x\in X_\lambda\}.$$

We start with $\{\tau(\bar{\alpha}): n(\tau) = 0\}$; the restriction to this set is the discrete topology. So (1) + (2) + (4) are O.K. For (3) (cellularity) we consider any finite intersection of u_x^l , $X_{\lambda} - u_x^l$ ($x = \tau(\bar{\alpha})$, $n(\tau) = 0$) for which there is no obvious reason why it should be empty; we add a point, i.e. an appropriate term

exemplifying its non-emptiness. So two Boolean combinations of u_x^l 's are not disjoint except when there is an obvious reason (e.g. u_x^8 , $u_x^6 - u_x^8$) and a point belongs to u_x^l only if it was added as a witness to an intersection including it.

- 11.1F. Trivial properties. Trivially $|X_{\lambda}| = \lambda$ (i.e. (4)) and X_{λ} has a basis of clopen sets (i.e. (1)).
- 11.1G. $\Delta(X_{\lambda}) = \aleph_0$. Suppose $x \neq y$ are from X_{λ} but $(x, y) \in \bigcap_l (\bigcup_z u_z^l \times u_z^l)$. So $x = \tau(\bar{\alpha}), y = \sigma(\bar{\beta})$. Let l(*) be a natural number bigger than any $g[\tau](i)$ $(i < k[\tau]), g[\sigma](i)$ $(i < k[\sigma])$.

Now look at the definition of $u_z^{l(*)}$; clearly

$$x \in u_z^{l(*)} \rightarrow x = z$$
,

$$y \in u_z^{l(*)} \Rightarrow y = z$$
.

As $y \neq x$, $(x, y) \notin \bigcup_z u_z^{l(*)} \times u_z^{l(*)}$.

11.1H. Cellularity is \aleph_0 . Let $\{u_i : i < \omega_1\}$ be pairwise disjoint open non-empty subsets of X_{λ} . So as we can decrease them, w.l.o.g.

$$u_i = \bigcap_{p=0}^{q(i)-1} (u_{x_{i,p}}^{l(i,p)})^{\epsilon(i,p)} \quad \text{where } x_{i,p} \in X_{\lambda}.$$

As we can replace $\{u_i: i < \omega_1\}$ by any uncountable subfamily, w.l.o.g. $\varepsilon(i, p) = \varepsilon(p), q(i) = q, l(i, p) = l(p)$ and for each $p, x_{i,p}$ ($i < \omega_1$) are all equal or all distinct. Also w.l.o.g. the truth value of $x_{i,p_1} = x_{i,p_2}$ does not depend on i and

$$X_{i_1, p_1} = X_{i_2, p_2} \Longrightarrow X_{i_1, p_1} = X_{i_2, p_2} = X_{i_1, p_2}$$

Now we can easily form a $\tau(\bar{\alpha})$ in $u_0 \cap u_1$.

REFERENCES

[ARSh 153] U. Abraham, M. Rubin and S. Shelah, On the consistency of some partition theorems for continuous colorings and the structure of \aleph_1 -dense real order type, Ann. Pure Appl. Logic 29 (1985), 123–206.

[BoSh 210] R. Bonnet and S. Shelah, Narrow Boolean algebras, Ann. Pure Appl. Logic 28 (1985), 1-12.

[GH] F. Galvin and A. Hajnal, *Inequalities for cardinal powers*, Ann. of Math. 101 (1975), 491-498.

[M] D. Monk, Cardinal functions of Boolean algebras, in Handbook of Boolean Algebra, to appear.

[ShA 1] S. Shelah, Classification Theory, North-Holland, Amsterdam, 1978.

[ShA 2] S. Shelah, *Proper Forcing*, Lectures Notes in Math. 940, Springer-Verlag, Berlin, 1982.

[Sh 88] S. Shelah, Classification theory for non-elementary classes II, Abstract elementary classes, Proc. U.S.A.-Israel Conference on Classification Theory, Chicago, December 1985.

[Sh 92] S. Shelah, Remarks on Boolean algebras, Algebra Univ. 11 (1980), 77-89.

[Sh 107] S. Shelah, Models with second order properties IV, a general method and eliminating diamonds, Ann. Math. Logic 25 (1983), 183-212.

[Sh 111] S. Shelah, On powers of singular cardinals, Notre Dame J. Formal Logic 27 (1986), 263-299.

[Sh 162] B. Hart, C. Laflamme and S. Shelah, Models with second order properties V: A general principle, Ann. Pure Appl. Logic, to appear.

[Sh 233] S. Shelah, Remarks on the number of ideals of Boolean algebras and open sets of a topology, Lecture Notes in Math. 1182, Springer-Verlag, Berlin, 1982, pp. 151-187.

[Sh 253] S. Shelah, Iterated forcing and normal ideals on ω_1 , Isr. J. Math. **60** (1987), 345–380.

[Sh 256] S. Shelah, More on powers of singular cardinals, Isr. J. Math. 59 (1987), 299-326.

[Sh 276] S. Shelah, Was Serpinski right? Isr. J. Math. 62 (1988), 355-380.

[Sh 282] S. Shelah, Successors of singular cardinals, productivity of chain conditions and cofinalities of reduced products of cardinals, Isr. J. Math. 62 (1988), 213-256.

[Sh 288] S. Shelah, Was Sierpinski right? II, in preparation.

[Sh 300] S. Shelah, *Universal Classes*, Ch. I-IV, Proc. United States-Israel Conference on Classification Theory (J. Baldwin, ed.), Lecture Notes in Math. 1292, Springer-Verlag, Berlin, 1985.

[Sh 300a] S. Shelah, Universal Classes, Ch. III-VI, preprint.

[Sh 326] S. Shelah, Models with no isomorphic ultrapowers, handwritten notes, July 1987.

[Sh 351] S. Shelah, Reflection of stationary sets and successors of singulars, Arch. Math. Logic, to appear.

[Sh 355] S. Shelah, \aleph_{WH} has a Jonsson algebra, to appear in a forthcoming book, Oxford University Press.

[Sh 371] S. Shelah, *More on pcf*, to appear in a forthcoming book, Oxford University Press. [Sh 400] S. Shelah, *Cardinal arithmetic*, to appear in a forthcoming book, Oxford University ess.

[T 1] S. Todorcevic, Remarks on chain conditions in products, Compos. Math. 55 (1985), 295-302.

[T 2] S. Todorecevic, Partitioning pairs of uncountable ordinals, Acta Math. 159 (1987), 261-294.

[T 3] S. Todorcevic, Remarks on cellularity in products, Compos. Math. 57 (1986), 357-372.